22 Chapter 2. Statistical Mechanics

Exercise 4 (Random Walk on a 1D Lattice)

Consider the random walk of a single particle on a line. The particle performs
jumps of fixed length1. Assuming that the probability for forward or backward
jumps is equal, the mean-squared displacement of a particle after N jumps
is equal to N. The probability that, after N jumps, the net distance covered
by the particle equals n is given by

2
In [P (n, N)] & %m (;ﬁ) I

1. Derive this eguation using Stirling’s approximation for Inx!.

2. Compare your numerical result for the root mean-squared displace-
ment with the theorstical prediction (the computed function P (n, N),
see the file output.dat}. What is the diffusivity of this system?

3. Modity the program in such a way that the prebability to jump in the
forward direction equals 0.8. What happens?

Exercise 5 (Random Walk on a 2D Lattice)

Consider the random walk of N particles on 2 M x M lattice. Two particles
cannot occupy the same lattice site. On this lattice, periodic boundaries are
used. This means that when a pariicle leaves the latiices it returns on the
opposite side of the latlice; i.e., the coordinates are given modulo M.

1. What is the fraction of occupied sites {8) of the lattice as a function of
M and N?

2. Make a plot of the diffusivity D as a function of 8 for M = 32, For low
values of 8, the diffusivity can be approximated by

D= Dy (1-8).

Why is this equation reasonable at low densities? Why does it break
down at higher densities?

3. Modify the program in such a way that the probability to jump in one
direction is larger than the probability to jump in the other direction.
Explain the results.

4. Modify the program in such a way that periodic boundary conditions are
used in one direction and reflecting boundary conditions in the other.
What happens?

Chapter 3
Monte Carlo Simulations

In the present chapter, we describe the basic principles of the Monte Carlo
method. In particular, we focus on simulations of systems of a fixed number
of particles (N) in a given volume (V) at a temperature (T).

3.1 The Mente Carlo Method

In the previous chapter, we introduced some of the basic concepts of (classi-
cal} statistical mechanics. Our next aim is to indicate where the Monte Carlo
method comes in. We start from the classical expression for the partition
function Q, equation (2.2.5):

Q= chderN exp[~H (N pN)/kpT], (3.1.1)
where r™ stands for the coordinates of all N particles, and p™ for the cor-
responding momenta. The function 7(q™,p™) is the Hamiltonian of the
system. It expresses the total energy of an isolated system as a function of
the coordinates and momenta of the constituent particles: H = K -/, where
K is the kinetic enexgy of the system and I/ is the potential energy. Finally,
¢ is a constant of proportionality, chosen such that the sum over quantum
states in equation (2.1.15) approaches the classical partition function in the
limit i — 0. For instance, for a system of N identical atoms, ¢ = 1/(h3NNI).
The classical equation corresponding to equation (2.2.1) is

_ JdpNdi™ A(p™, r™) exp[-pH(p™, V)]

A JdpNdsN exp[—pH(pN,rN)] '

(3.1.2)

where § = 1/kgT. In this equation, the observable A has been expressed
as a function of coordinates and momenta. As X is a quadratic function of
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the momenta the integration over momenta can be carried out analytically.
Hence, averages of functions that depend on momenta only are usually easy
to evaluate.! The difficult problem is the computation of averages of func-
tions A(rM). Only in a few exceptional cases can the multidimensional in-
tegral over particle coordinates be computed analytically; in all other cases
numerical techniques must be used.

Having thus defined the nature of the numerical problem that we must
solve, let us next look at possible solutions. It might appear that the most
straightforward approach would be to evaluate (A} in equation (3.1.2) by
numerical quadrature, for instance using Simpson’s rule. It is easy to see,
however, that such a method is completely useless even if the number of
independent coordinates DN (D is the dimensionality of the system) is still
very small O(100). Suppose that we plan to carry out the quadrature by
evaluating the integrand on a mesh of points in thé DN-dimensional config-

-uration space. Let us assume that we take m equidistant points along each
coordinate axis. The total number of points at which the integrand must be
evaluated is then equal to mP™N. For all but the smallest systems this num-
ber becomes astronomically large, even for small values of m. For instance,
if we take 100 particles in three dimensions, and m = 5, then we would have
to evaluate the integrand at 1027° points! Computations of such magnitude
cannot be performed in the known universe. And this is fortunate, because
the answer that would be obtained would have been subject to a large sta-
tistical error. After all, numerical quadratures work best on functions that
are smooth over distances corresponding to the mesh size. But for most in-
termolecular potentials, the Boltzmann factor in equation (3.1.2) is a rapidly
varying function of the particle coordinates. Hence an accurate quadrature
requires a small mesh spacing (i.e., a large value of m). Moreover, when
evaluating the integrand for a dense liquid (say), we would find that for the
overwhelming majority of points this Boltzmann factor is vanishingly small.
For instance, for a fluid of 100 hard spheres at the freezing point, the Boltz-
mann factor would be nonzero for 1 out of every 1026 configurations!

The preceding example clearly demonstrates that better numerical tech-
niques are needed to compute thermal averages. One such a technique is
the Monte Carlo method or, more precisely, the Monte Carlo importance-
sampling algorithggintroduced in 1953 by Metropolis et al. [6]. The applica-
tion of this method fo the numerical simulation of dense molecular systems
is the subject of the present chapter.

3.1.1 Importance Sampling

Before discussing importance sampling, let us first look at the simplest Mon-
te Carlo technique, that is, random sampling. Suppose we wish to evaluate

TThis is not the case when hard constraints are used, see section 11.2.1.
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numerically a one-dimensional integral I:

b
I= J dx f(x}). (3.1.3)

a

Instead of using a conventional quadrature where the integrand is evaluated
at predetermined values of the abscissa, we could do something else. Note
that equation (3.1.3) can be rewritten as

[=(b—a) (f(x)), (3.14)

where {f{x}) denotes the unweighted average of f(x) over the interval [a, b].
In brute force Monte Carlo, this average is determined by evaluating f(x) at
a large number (say, L) of x values randomly distributed over the interval
la, b]. Itis clear that, as L — oo, this procedure should yield the correct value
for I. However, as with the conventional quadrature procedure, this method
is of little use to evaluate averages such as in equation (3.1.2) because most of
the computing is spent on points where the Boltzmann factor is negligible.
Clearly, it would be much preferable to sample many points in the region
where the Boltzmann factor is large and few elsewhere. This is the basic
idea behind importance sampling.

How should we distribute our sampling through configuration space?
To see this, let us first consider a simple, one-dimensional example. Suppose
we wish to computg-the definite integral in equation (3.1.3) by Monte Carlo
sampling, but with the sampling points distributed nonuniformly over the
interval [a,b] {for convenience we assume a = 0 and b = 1), according to
some nonnegative probability density w(x). Clearly, we can rewrite equa-
tion (3.1.3) as

1

f

1:[ dx wix) T (3.1.5)
0 w(x)

Let us assume that we know that w(x) is the derivative of another (non-

negative, nondecreasing) function u{x}, with 1(0) = 0 and u(1) = 1 (these

boundary conditions imply that w(x] is normalized). Then I can be written

as ; ] |
I= j du & (3.1.6)
o wix(u]]
In equation (3.1.6) we have written x(u) to indicate that, if we consider u as
the integration variable, then x must be expressed as a function of u. The
next step is to generate L random values of u uniformly distributed in the
interval [0, 1]. We then obtain the following estimate for I:

1 fhw)]
Iv g ; i (3.1.7}



What have we gained by rewriting Iin this way? The answer depends cru-
cially on our choice for w(x). To see this, let us estimate o7, the variance in
* I, where I denotes the estimate for I obtained from equation (3.1.7) with L
random sample poinis: '

L L
o — LLZZZ <(%c([% _ (f/w)) (M _ (f/w))>, (3.1.8)

i=1j=t1 wilx{u;)]

where the angular brackets denote the true average, that is, the one that
would be obtained in the limit 1 — co. As different samples i and j are
assumed to be totally independent, all cross terms in equation (3.1.8) vanish,
and we are left with

1« /[ fixw) | z
7 = g L { (R - )
= H((f/""’V)—(f/W)Z]- (3.1.9)

Equation (3.1.9) shows that the variance in I still goes as 1/L, but the mag-
nitude of this variance can be reduced greatly by choosing w(x) such that
f{x)/w(x) is a smooth function of x. Ideally, we should have f{x)/w(x) con-
stant, in which case the variance would vanish altogether. In contrast, if w(x)
is constant, as is the case for the brute force Monte Carlo sampling, then the
relative error in 1 can become very large. For instance, if we are sampling
in a (multidimensional) configuration space of volume 0, of which only a
small fraction f is accessible (for instance, f — 107269, see previous section),
then the relative error that results in a brute force MC sampling will be of
order 1/(Lf). As the integrand in equation (3.1.2) is nonzero only for those
configurations where the Boltzmann factor is nonzero, it would clearly be
advisable to carry out a nonuniform Monte Cario sampling of configuration
space, such that the weight function w is approximately proportional to the
Boltzmann factor. Unfortunately, the simple importance sampling scheme
described previpusly cannot be used to sample multidimensional integrals
over configuratign space, such as equation (3.1.2). The reason is simply that
we do not know how to construct a transformation such as the one from
equation (3.1.5) to equation (3.1.6) that would enable us to generate points
in configuration space with a probability density proportional to the Boltz-
mann factor. In fact, a necessary (but not nearly sufficient) condition for the
solution to the latter problem is that we must be able to compute analytically
the partition function of the system under study. If we could do that for the

systems of interest to us, there would be hardly any need for computer sim-
ulation.

3.1.2 The Metropolis Method

The closing lines of the previous section suggest that it%\sls in gene_ral not pos-
sible to evaluate an integral, such as [ dr™ exp[—BY (3:' 1, by du.‘ect Monte
Carlo sampling. However, in many cases, we are not interested in the con-
figurational part of the partition function itself but in averages of the type

Jdr™ exp[—pU (M)A (N (3.1.10)
[ drN exp[—pL(rN)]

A) =

Hence, we wish to know the rafio of two integrals. What Metropolis et al. [6]
showed is that it is possible to devise an efﬁcien't Monte Carlo scl"leme to
sample such a ratic.? To understand the Metropolis method, let us first look
more closely at the structure of equation (3.1.?0). In what follows we denote
the configurational part of the partition function by Z:

Z= jdrN expl—BU{x™)). (3.1.11)

Note that the ratic exp(—f{)/Z in equation (3.1.10} is the probability der}-
sity of finding the system in a configuration around r™. Let us denote this

probability density by

- N
NN = w_

Iy, N (r™) is nonnegative. o
CleaS]ilng(\)’;[e n<))w that wge are somehow able tg 'rand‘om}y g?nerate Eogffv,hllln
configuration space according to this probability distribution A (.r ). 3
means that, on average, the number of points n; generated per unit volu_me
around a point r™ is equal to LA/ (x™), where L is the total number of points
that we have generated. In other words,

(A) = il > A (3.1.12)

e reader is almost certainly confused about the differencg, if any,
Ezt;lrzzvntgquaﬁon (3.1.12) and equaﬁgn (3.1.7) of sc'ect'ion 3.1.1. Th'e' difference
is that in the case of equation (3.1.7) we know a priori the probability of sam-
pling a point in a (hyper)volume dx™ around rN: In other words we knglw
both exp[—BU(xN)] and Z. In contrast, in eq1.1at10n (3.1.12) we know © by
exp[—BU(N)]; that is, we know only the relatlvg but not the a'bsolute pro d—
ability of visiting different points in configuration space. This may soun

2An interesting account of the early history of the Metropolis method may be found in
refs. [1,46].




Figure 3.1: Measuring the de i i
pth of the Nile: a comparison of i
quadrature (left), with the Metropolis scheme (right{ o conventional

rather abstract: let us therefore try to clarify the difference with
a sunplfe example (see Figure 3.1). In this lcf}i,gure, we com;;ﬁletiz\t}cl)em}:aelg gg
l1311easurmg tf‘te depth. of the river Nile, by conventional quadrature (left)yand
y Metropolis sampling; that is, the construction of an importance-weighted
ranc}om walk gright). In the conventional quadrature scheme, the vaﬁle ?)f
the mtegrapd 1s measured at a predetermined set of points. :As the choice
of these points c.ioes not depend on the value of the integrand, many points
ﬁay be lqcated In regions where the integrand vanishes. In contrast Iin the
etropolis scher:.ne, a random walk is constructed through that reé;ion of
s}llajace where the integrand is nonnegligible (i.e., through the Nile itself). In
this random walk, a trial move is rejected if it takes you out of the water a:md
is accepteg otherwise. After every trial move (accepted or ﬁot) the depth of
t}}e water is r.neasured. The (unweighted) average of all these IJr’leasureElents
yields an est!me%te of the average depth of the Nile. This, then, is the essence
of the MetroRohs method. In principle, the conventional quad’rature sch
w?uld also give results for the total area of the Nile. In the importance seme
p%mg scheme, however, information on the total area cannot be obt ned
directly, since this quantity is similar to Z. obiained
Let us next consider how to generate points in confi i it
a relam_re Probabﬂity proportional to the %oltzmann facﬁ;f a"lt"lf?: sgr?;:a;ve:ﬂ}
groach is first to prepare the system ina configuration r™, whichgwe denoltje
y mg (old)f that has a nonvanishing Boltzmann factor exp[—pif(o)]. This
co. 1guration, for example, may correspond to a regular crystalline lattice
with no hard-core overlaps. Next, we generate a new trial configuration r'™

which we denote by 1 (new), by adding a small random displacement A
to 0. The Boltzmann factor of this trial configuration is exp[—plU(n]l. We
must now decide whether we will accept or reject the trial configuration.
Many rules for making this decision satisfy the constraint that on average
the probability of finding the system in a configuration n is proportional to
N{n). Here we discuss only the Metropolis scheme, because it is simple and
generally applicable.

Let us now “derive” the Metropolis scheme to determine the transition
probability (o — n) to go from configuration o to n. It is convenient to
start with a thought experiment (actually a thought simulation). We carry
out a very large number (say M) Monte Carlo simulations in parallel, where
M is much larger than the total number of accessible configurations. We
denote the number of points in any configuration o by m(o}. We wish that,
on average, m{o) is proportional to N(0). The matrix elements (o — nJ
must satisfy one obvious condition: they do not destroy such an equilibrium
distribution once it is reached. This means that, in equilibrium, the average
number of accepted trial moves that result in the system leaving state o must
be exactly equal to the number of accepted trial moves from all other states n
to state o. It is convenient to impose a much stronger condition; namely, that
in equilibrium the average number of accepted moves from o to any other
state n is exactly canceled by the number of reverse moves. This detailed

balance condition implies the following:
N(on(o — ) = M(n)r(n — o). (3.1.13)

Many possible forms of the transition matrix (o — 1) satisfy equation
(3.1.13). Let us look how nt(o — n)is constructed in practice. We recall that
a Monte Carlo move consists of two stages. First, we perform a trial move
from state o to state . We denote the transition matrix that determines the
probability of performing a trial move from o ton by a(o — n), where ot is
usually referred to as the underlying matrix of the Markov chain [47]. The
next stage is the decision to either accept or reject this trial move. Let us
denote the probability of accepting a trial move from o ton by acclo = n).
Clearly,

m{o = n) = alo = n) x acc(o — nJ. (3.1.14)
In the original Metropolis scheme, « is chosen to be a symmetric matrix
(x(o — n) = «(n — o)). However, in later sections we shall see several
examples where « is nof symmetric. If o is symmetric, we can rewrite equa-
tion (3.1.13) in terms of the acc{o — n):

N(o) x acclo = n) = A (n) x acc(n — o). (3.1.15)

From equation (3.1.15) follows

acclo—n)  ANn)
accin = o) Nlo) exp{—pU ) —U(o)l}. (3.1.16)




Again, many choices for acc{o — n) satisfy this condition (and the obvious

condition that the probability acclfo — n .
‘Metropolis ef al. is ty acel ) cannot exceed 1). The choice of

acclo = n) = N(n)/ANo) N < No)
=1 ifA'(n) > A(o). (3.1.17)

?;her choices fqr acclo — n) are possible (for a discussion, see for instance
[ff.])., b1t1t the ?;gm?l choice of Metropolis ef al. appears to result in a more
etiicient sampling of configuration space than most oth i
been proenby | 8. er strategies that have
In summary, then, in the Metropoli iti
: , . polis scheme, the transition probabili
for going from state o to state n is given by F v

lo—=n) = zx%o —=n) N(n) > Mo)
= «lo s n)WNn)/N N

Note that we still have not specified the matrix «, except for the fact that it
must be symmetric. This reflects considerable freedom in the choice of our
trial moves. We will come back to this point in subsequent sections.

. One thlpg that we have not yet explained is how to decide whether a
trial move is to be accepted or rejected. The usual procedure is as follows
Suppose that we have generated a trial move from state o to state n, witlr;

Uln) > U{o). According to equation (3.1.16) this tri
. tr )
cepted with a probability 4 ( ) this trial move should be ac

acc{o = n) = exp{—B/(n) —U(o)]} < 1.

In order to decide whether to accept or reject the tria
a random number, denoted by Ran%f), from il uniform dligr?gs”fic‘;;eh%etrlir?:
terval [0, 1]. Clearly, the probability that Ranf is less than accfo — n)is
equal ’Fo at?c[o — 1). We now accept the trial move if Ranf < acc(o — )
ar_ld reject it otherwise. This rule guarantees that the probability to accept a
Tcrlal move from o to n is indeed equal to acc(o — n). Obviéusly it is vi
Important that our random-number generator does indeed gene’rate nunlr.l}—r
be;s umflormly in the interval [0, 7]. Otherwise the Monte Carlo samplin
will be biased. The quality of random-number generators should never bg
;aker;1 fpr grante(?l. A good discussion of random-number generators can be
mbg( ggTerzcal Recipes [33] and in Monte Carlo Methods by Kalos and
.Thus far, we have not mentionedénother condition that 71(o — 1) should
satisfy, namely that it is ergodic (i.e., every accessible point in configuration
space can be reached in a finite number of Monte Carlo steps from any other
point). Although some simple MC schemes are guaranteed to be e?:fgodic,

these are often not the most efficient schemes. Conversely, many efficient
Monte Carlo schemes have either not been proven to be ergodic or, worse,
been proven to be nonergodic. The solution is usually to mix the efficient,
nonergodic scheme with an occasional trial move of the less-efficient but
ergodic scheme. The method as a whole will then be ergodic (at least, in
principle).

At this point, we should stress that, in the present book, we focus on
Monte Carlo methods to model phenomena that do not depend on time. In
the literature one can also find dynamic Monte Carlo schemes. In such dy-
namic algorithms, Monte Carlo methods are used to generate a numerical
solution of the master equation that is supposed to describe the time evolu-
tion of the system under study. These dynamic techniques fall outside the
scope of this book. The reader interested in dynamic MC schemes is referred
to the relevant literature, for example Ref. [48] and references therein.

3.2 A Basic Monte Carlo Algorithm

It is difficult to talk about Monte Carlo or Melecular Dynamics programs in
abstract terms. The best way to explain how such programs work is to write
them down. This will be done in the present section.

Most Monte Carlo or Molecular Dynamics programs are only a few hun-
dred to several thousand lines long. This is very short compared to, for
instance, a typicat*‘quantum-chemistry code. For this reason, it is not un-
common that a simulator will write many different programs that are tailor-
made for specific applications. The result is that there is no such thing as a
standard Monte Carlo or Molecular Dynamics program. However, the cores
of most MD/MC programs are, if not identical, at least very similar. Next,
we shall construct such a core. It will be very rudimentary, and efficiency
has been traded for clarity. But it should demonstrate how the Monte Carlo

method works.

3.21 The Algorithm

The prime purpose of the kind of Monte Carlo or Molecular Dynamics pro-
gram that we shall be discussing is to compute equilibrium properties of
classical many-body systems. From now on, we shall refer to such programs
simply as MC or MD programs, although it should be remembered that there
exist many other applications of the Monte Carlo method (and, to a lesser ex-
tent, of the Molecular Dynamics method). Let us now look at a simple Monte
Carlo program.

In the previous section, the Metropolis method was introduced as a Mar-
kov process in which a random walk is constructed in such a way that the



probability of visiting a particular point r™ is proportional to the Boltzmann
factor exp(—pU (x™)]. There are many ways to construct such a random walk.
In the approach introduced by Metropolis et al. [6], the following scheme is
proposed: ‘

1. Select a particle at random, and calculate its energy (™),

2. Give the particle a random displacement, v’ = v + A, and calculate its
new energy U™,

3. Accept the move from ™ to r'™ with probability

ace(o - n) = min (1, exp{—Bl/(x™) — (s ). 3.2.1)

An implementation of this basic Metropolis scheme is shown in Algorithms
1land 2.

3.2.2 Technical Details

In this section, we discuss a number of computational tricks that are of great
practical importance for the design of an efficient simulation program. It
should be stressed that most of these tricks, although undoubtedly very use-
ful, are not unique and have no deep physical significance. But this does not
imply that the use of such computational tools is free of risks or subtleties.
Ideally, schemes to save computer time should not affect the results of a sim-
ulation in a systematic way. Yet, in some cases, time-saving tricks do have
a measurable effect on the outcome of a simulation. This is particularly true
for the different procedures used to avoid explicit calculation of intermolec-
ular interactions between particles that are far apart. Fortunately, once this
is recognized, it is usually possible to estimate the undesirable side effect of
the time-saving scheme and correct for it.

Boundary Conditions

Monte Carlo and Molecular Dynamics simulations of atomic or molecular
systems aim to provide information about the properties of a macroscopic
sample. Yet, the number of degrees of freedom that can be conveniently han-
dled in present-day computers ranges from a few hundred to a few million.
Most simulations probe the structural and thermodynamical properties of a
system of a few hundred to a few ﬁmusand particles. Clearly, this number
is still far removed from the therriodynamic limit. To be more precise, for
such small systems it cannot be safely assumed that the choice of the bound-
ary conditions (e.g., free or hard or periodic) has a negligible effect on the
properties of the system. In fact, in a three-dimensional N-particle system

Algorithm 1 (Basic Metropolis Algorithm)

PROGRAM mc

do icycl=1,ncycl
call mcmove
if (mod{icycl,nsamp).eq.0)
+ call sample
enddo
end

basic Metropolis algorithm

petform ncycl MC cycles
displace a particle

sample averages

Comments to this algorithm:

1. Subroutine momove attempls to displace a randomly selected particle

(see Algorithm 2).
2. Subroutine sample samples quantities

every nsampth cycle.

Algorithm 2 (Attempt to Displace a Particle)

gt

SUBROUTINE mcmove

o=int (ranf () *npartc) +1
call ener (x{o),eno)
xn=x{o}+(ranf () -0.5) *delx
call ener{xn,enn)

if (ranf().lt.exp(-beta
+ * {enn-eno)) x(o)=xn
return

end

attempts to displace a particle

select a particle at random

energy old configuration

give particle random displacement
energy new configuration
acceptance rule {3.2.1)

accepted: replace x (o) by xn

Comments to this algorithm:

1. Subroutine ener calculates the energy of a particle at the given position.
2. Note that, if a configuration is rejected, the old configuration is retained.

3. The ranf () is a random number uniform in [0, 1].
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- Figure 3.2: Schematic representation of periodic boundary conditions.

with free boundaries, the fraction of all molecules that is at the surface is
proportional to N~1/3, For instance, in a simple cubic crystal of 1000 atoms
some 49% of all atoms are at the surface, and for 10¢ atoms this fraction has’
decreased to only 6%.

‘ In order to simulate bulk phases it is essential to choose boundary condi-
tions that mimic the presence of an infinite bulk surrounding our N-particle
modt?l. system. This is usually achieved by employing periodic boundary
conditions. The volume containing the N particles is treated as the primitive
cell of an infinite periodic lattice of identical cells (see Figure 3.2). A given
particle (i, say) now interacts with all other particles in this infinite periodic
system, that is, all other particles in the same periodic cell and all particles
(including its own periodic image) in all other cells. For instance, if we as-
sume that all intermolecular interactions are pairwise additive, then the total
potential energy of the N particles in any one periodic box is

1
Uer =5 D "ullry +nli),

i,j,n

where L is the diameter of the perjodic box (assumed cubic; for convenience)
and n is an arbitrary vector of thrée integer numbers, while the prime over
the sum indicates that the term with 1 = j is to be excluded when n = 0.
In this very general form, periodic boundary conditions are not particularly
useful, because to simulate bulk behavior, we had to rewrite the potential
energy as an infinite sum rather than a finite one.® In practice, however, we

3 . - . .
In fact, in the first MC simulation of three-dimensional Lennard-fones particles, Wood and

Parker 49 dlSCuSS the use O{ SuCh infinite sum 1
s mn relahon to the now conventional a roacl
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are often dealing with short-range interactions. In that case it is usually per-
missible to truncate all intermolecular interactions beyond a certain cutoft
distance .. How this is done in practice is discussed next.

Although the use of periodic boundary conditions proves to be a sur-
prisingly effective method for simulating homogeneous bulk systems, one
should always be aware that the use of such boundary conditions may lead
to spurious correlations not present in a truly macroscopic bulk system. In
particular, one consequence of the periodicity of the model system is that
only those fluctuations are allowed that have a wavelength compatible with
the periodic lattice: the longest wavelength that still fits in the periodic box
is the one for which A = L. If long wavelength fluctuations are expected to
be important (as, for instance, in the vicinity of a continuous phase transi-
tion), then one should expect problems with the use of periodic boundary
conditions. Another unphysical effect that is a manifestation of the use of
periodic boundary conditions is that the radial distribution function g(r) of
a dense atomic fluid is found to be not exactly isotropic [50].

Finally, it is useful to point out one common misconception about peri-
odic boundary conditions, namely, the idea that the boundary of the periodic

_box itself has any special significance. It has none. The origin of the periodic

lattice of primitive cells may be chosen anywhere, and this choice will not
affect any property of the model system under study. In contrast, what is
fixed is the shape of the periodic cell and its orientation.

ol
Truncation of Interactions

Let us now consider the case that we perform a simulation of a system with
short-range interactions. In this context, short-ranged means that the total po-
tential energy of a given particle i is dominated by interactions with neigh-
boring particles that are closer than some cutoff distance ve. The error that
results when we ignore interactions with particles at larger distances can be
made arbitrarily small by choosing r. sufficiently large. If we use periodic
boundary conditions, the case that rc is less than 1/2 (half the diameter of the
periodic box) is of special interest because in that case we need to consider
the interaction of a given particle i only with the nearest periodic image of
any other particles j (see the dotted box in Figure 3.2). If the intermolecular
potential is not rigorously zero for v > T, truncation of the intermolecular
interactions at v. will result in a systematic error in Z/*, If the intermolec-
ular interactions decay rapidly, one may correct for the systematic error by
adding a tail contribution to 2"":

74t — Z Ue(Ti) + Nop ro dr u(r)dmr? 3.2.2)
o5 5 , 2
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where uc stands for the truncated potential energy function and p is the
average number density. In writing down this expression, it is implicitly
assumed that the radial distribution function g(r) = 1 for v > 1¢. Clearly, the
nearest periodic image convention can be applied only if the tail correction
is small. From equation (3.2.2) it can be seen that the tail correction to the
potential energy is infinite unless the potential energy function u(r} decays
more rapidly than r—3 (in three dimensions). This condition is satisfied if the
long-range interaction between molecules is dominated by dispersion forces.
However, for the very important case of Coulomb and dipolar interactions,
the tail correction diverges and hence the nearest-image convention cannot
be used for such systems. In such cases, the interactions with all periodic
images should be taken into account explicitly. Ways to do this are described
in Chapter 12.1.

. Several factors make truncation of the potential a tricky business. First of
all, it should be realized that, although the absolute value of the potential en-
ergy function decreases with interparticle separation v, for sufficiently large
v, the number of neighbors is a rapidly increasing function of r. In fact, the
number of particles at a distance r of a given atom increases asymptotically
as 19~1, where d is the dimensionality of the system. As an example, let us
compute the effect of truncating the pair potential for a simple example —
the three-dimensional Lennard-Jones fluid. The pair potential for this rather
popular model system is given by

win =4¢ ()" - (2)- - (23)

The average potential energy (in three dimensions) of any given atom 1 is
given by ~
o0

w = (1/2) L drdzr2p(r)u(r),

where p(r) denotes the average number density at a distance r from a given
atom 1. The factor (1/2) has been included to correct for déuble counting of
intermolecular interactions. If we truncate the potential at a distance ¢, we
ignore the tail contribution 12!

o0

uil = (1/2) j dr4mr?p(vu(r), (324

Te

where we have dropped the subscript i, because all atoms in the system are
identical. To simplify the calculation of wi we assume that for v > 1, the
density p(r) is equal to the average number density p. If uir) is the Lennard-
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Jones potential, we find for il

T — %tmpj drriu(r)

= Do ["ar?[(9) - (9)]

< , 3
— Srpes? B (TE) - (g‘_) } (3.2.5)

For a cutoff distance v, = 2.5 ¢ the potential has decayed fo a value that is
about 1/60th of the well depth. This seems to be a very small value, but
in fact the tail correction is usually nonnegligible. For instance, at a density
pa® = 1, we find uP! = —0.535¢. This number is certainly not negligi.ble
compated to the total potential energy per atom (almost 10% at a typical
liquid density); hence although we can truncate the potential at 2.5 ¢, we
cannot ignore the effect of this truncation.

There are several ways to truncate potentials in a simulation. Although
the methods are designed to yield gimilar results, it should be realliz.ec? that
they yield results that may differ significantly, in particular in the vicinity of
critical points [51-53] (see Figure 3.3). Often used methods to truncate the
potential are

1. Simple truncation

2. Truncation and shift

3. Minimum image convention.

Simple Truncation The simplest method to truncate potentials is to ignore
all interaction beyond 1¢, the potential that is simulated is

wfr) r<e
une(r) = { 0 ot (3.2.6)
As already explained, this may result in an appreciable error in our estimate
of the potential energy of the true Lennard-Jones potential (3.2.3). I\/.Ion?over,
as the potential changes discontinuously at v, a truncated potential is not
particularly suitable for a Molecular Dynamics simulation. It can, however,
be used in Monte Carlo simulations. In that case, one should be aware that
there is an “impulsive” contribution to the pressure due to the discor‘ltinuous
change of the potential at rc. That contribution can by no means be ignored.

AN
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Figure 3.3: Vapor-liquid coexistence curves of various three-dimensional
Lennard-Jones fluids: effect of the truncation of the potential on the loca-
tion of the critical point (large black dots). The upper curve gives the phase
er}velope for the full Lennard-Jones potential (i.e., a truncated potential with
tail correction); the lower curve gives the envelope for the potential that is
used in most Molecular Dynamics simulations (truncated and shifted poten-
tial with r. = 2.50), data from [53].

For instance, for the three-dimensional Lennard-Jones system,

APTY = 83_7Tp29[1'c]€0‘3 [(E)9¥(£)3J
T Te
3 9 3
~ ;;:;2603 l:(%) - (%) } . (3.2.7)

.It is rare, however, to see this impulsive correction to the pressure applied
n simulations of systems with truncated potentials. Usually, it is simply as-
sumed that we can correct for the truncation of the intermolecular potential
by adding the correction given by equation (3.2.5) to the potential energy.
The corresponding correction to the pressure is

APRT = (1/2)4mp? f drt’r - £(r)

Te

16 2 ¢ 3
?TTPZGO'B [g (%) - (%)J . (3.2.8)

But, as is ix?lmediately obvious from a comparison of equations (3.2.7) and
(3.2.8), the impulsive correction to the pressure is not equivalent to the tail

Il

correction. Rather, the impulsive pressure is the contribution that must be
included if one wishes to compute the true pressure of a system with a trun-
cated potential, whereas the tail correction should be included to obtain an
estimate of the pressure in a system with untruncated interactions.

Truncated and Shifted In Molecular Dynamics simulations, it is common
to use another procedure: the potential is truncated and shifted, such that
the potential vanishes at the cutoff radius:

B
u“‘_Sh(r)—{ g][‘l‘) wi(re) :f:s _ (3.2.9)

In this case, there are no discontinuities in the intermolecular potential and
hence no impulsive corrections to the pressure. The advantage of using
such a truncated and shifted potential is that the intermolecular forces are
always finite.* This is important because impulsive forces cannot be han-
dled in those Molecular Dynamics algorithms to integrate the equations of
motion that are based on a Taylor expansion of the particle positions. Of
course, the potential energy and pressure of a system with a truncated and
shifted potential differ from the corresponding properties of both the mod-
els with untruncated and with truncated but unshifted pair potentials. But,
as before, we can approximately correct for the effect of the modification of
the intermolecular potential on both the potential energy and the pressure.
For the pressureythe tail correction is the same as in equation (3.2.8). For the
potential energy, we must add to the long-range correction (3.2.5} a contri-
bution equal to the average number of particles that are within a distance r.
from a given particle, multiplied by half the value of the (untruncated) pair
potential at rc. The factor one-half is included to correct for overcounting
of the intermolecular interactions. One should be extremely careful when
applying truncated and shifted potentials in models with anisotropic inter-
actions. In that case, truncation should not be carried out af a fixed value of
the distance between the molecular centers of mass but at a point where the
pair potential has a fixed value, because otherwise the potential cannot be
shifted to 0 at the point where it is truncated. For Monte Carlo simulations,
this is not serious, but for Molecular Dynamics simulations this would be
quite disastrous, as the system would no longer conserve energy, unless the
impulsive forces due to the truncating and shifting are taken into account
explicitly.

Minimum Image Convention Sometimes the minimum image convention
is used. The truncation is in this case not at a spherical cutoff; instead the

*The first derivative of the force is discontinuous at the cutoff radius; some authors remove
this discontinuity as well {for more details, see [19]).



interaction with the (nearest image) of all the particles in the simulation box
is calculated. As a consequence, the potential is not a constant on the surface
of a cube around a given particle. Hence, for the same reasons as mentioned
in the previous paragraph, the simple minimum image convention should
never be used in Molecular Dynamics simulations.

In the preceding, we described some details on how the energy shouid be
calculated. The implementation of a simple, order-N?, algorithm to compute
the energy will be discussed in section 4.2.2 in the context of a Molecular Dy-
namics simulation (see Algorithm 5). More advanced schemes to simulate
large systems efficiently are described in Appendix F.

Initialization

To start the simulation, we should assign initial positions to all particles in
-the system. As the equilibrium properties of the system do not (or, at least,
should not) depend on the choice of initial conditions, all reasonable initial
conditions are in principle acceptable. If we wish to simulate the solid state
of a particular model system, it is logical to prepare the system in the crystal
structure of interest. In contrast, if we are interested in the fluid phase, we
simply prepare the system in any convenient crystal structure. This crys-
tal subsequently melts, because at the temperature and density of a typical
liquid-state point, the solid state is not thermodynamically stable. Actually,
one should be careful here, because the crystal structure may be metastable,
even if it is not absolutely stable. For this reason, it is unwise to use a crystal
structure as the starting configuration of a liquid close to the freezing curve.
In such cases, it is better to use the final (liquid) configuration of a system at
a higher temperature or lower density, where the solid is unstable and has
melted spontaneously. In any event, it is usually preferable to use the final
(well-equilibrated} configuration of an earlier simulation at a nearby state
point as the starting configuration for a new run and adjust the temperature
and density to the desired values.
The equilibrium properties of a system should not depend on the initial
conditions. If such a dependence nevertheless is observed in a simulation,

there are two possibilities. The first is that our results reflect the fact that the

system that we simulate really behaves nonergodically. This is the case, for
instance, in glassy materials or low-temperature, substitutionally disordered
alloys. The second (and much more likely) explanation is the system we
simulate is ergodic but our sampling of configuration space is inadequate;
in other words, we have not yet reached equilibrium.

Reduced Units

In simulations it is often convenient to express quantities such as tempera-
ture, density, pressure, and the like in reduced units. This means that we
choose a convenient unit of energy, length and mass and then express all

e o

other quantities in terms of these basic units. In the exarhple of a Lennard-
Jones system, we use a pair potential that is of the form u(r) = ef(r/ c).(se‘e
equation (3.2.3)). A natural (though not unique) choice for our basic units is
the following:

e Unit of length, ¢
e Unit of energy, €
» Unit of mass, m (the mass of the atoms in the system)

and from these basic units, all other units follow. For instance, our unit of

fime is
. oy m/e

and the unit of temperature is
E/kB .

In terms of these reduced units, denoted with superscript *, the rgduced
pair potential u* = /e is a dimensionless function of the reduced dlEftar.lCE
™ = v/0. For instance, the reduced form for the Lennard-Jones potential is

. 12 1 6
wl(r*) =4[(:—*) — (T—) ] (3.2.10)

With these conventions we can define the following reduced units: the po-
tential energy U* ZUe ", the pressure P* = Pode™!, the density p* = po”,
and the temperature T* = kgTe . .

One may wonder why it is convenient to i:ntroducg re'.duced units. The
most important reason is that (infinitely) many COIl’lb]ljlaiEIOIlS of p, 7T, ¢, and
o all correspond to the same state in reduced units. This is the law of corre-
sponding states: the same simulation of a Lennard-Jones model can be us.ed
to study Ar at 60 K and a density of 840 kg/ m? and Xe at 112 K and a density
of 1617 kg/ m3. In reduced units, both simulations corre.spond to. the state
point p* = 0.5, T* = 0.5. If we had not used reduced units, we might h_ave
easily missed the equivalence of these two simulations. Anothel_', practical,
reason for using reduced units is the following: when we work w1th real (SI)
units, we find that the absolute numerical values of the quantities .that we
are computing (e.g., the average energy of a particle or its acceleration) are
either much less or much larger than 1. If we multiply several such‘quanh—
ties using standard floating-point multiplication, we face a distinct risk that,
at some stage, we will obtain a result that creates aploverﬂ.ow or under-
flow. Conversely, in reduced units, almost all quantities oif interest are of
order 1 (say, between 1072 and 10%). Hence, if we sggdenly find a very large
(or very small) number in our simulations (say, 10%%), then there is a good
chance that we have made an error somewhere. In other words, reduced



Quantity = Reduced units Real units
temperature T*=1 = T=119.8K
density p*=1.0 S p=1680 kg/m3
time At* =0.005 o At=1.09x 107145
pressure P*=1 — P=41.2MPa

Table 3.1: Translation of reduced units to real units for Lennard-Jones argon
(e/kg =119.8K, 0 =3.405 x 107'%m, M = 0.03994 kg/mol)

units make it easier to spot errors. Simulation results that are obtained in
reduced units can always be translated back into real units. For instance, if
we wish to compare the results of a simulation on a Lennard-Jones model
at T* = 1 and P* = 1 with experimental data for argon (e¢/kg = 119.8 K,
0 =3.405x 10710 m, M = 0.03994 kg/mol), then we can use the translation
given in Table 3.1 to convert our simulation parameters to real SI units.

3.2.3 Detailed Balance versus Balance

Throughout this book we use the condition of detailed balance as a test
of the validity of a Monte Carlo scheme. However, as stated before, the
detailed-balance condition is sufficient, but not necessary. Manousiouthakis
and Deem [54] have shown that the weaker “balance condition” is a neces-
sary and sufficient requirement. A consequence of this proof is that one has
more freedom in developing Monte Carlo moves. For example, in the simple
Monte Carlo scheme shown in Algorithm 2 we select a particle at random
and give it a random displacement. During the next trial move, the a pri-
ori probability to select the sane particle is the same. Thus the reverse trial
move has the same a priori probability and detailed balance is satisfied. An
alternative scheme is to attempt moving all particles sequentially, i.e., first an
attempt to move particle one, followed by an attempt to move particle two,
etc. In this sequential scheme, the probability that a single-particle move is
followed by its reverse is zero. Hence, this scheme clearly viclates detailed
balance. However, Manousiouthakis and Deem have shown that such a se-
quential updating scheme does obey balance and does therefore (usually -—
see Ref. [54]) result'in correct MC sampling.

We stress that the detailed-balance condition remains an important guid-
ing principle in developing novel Monte Carlo schemes. Moreover, most al-
gorithms that do not satisfy detailed balance are simply wrong. This is true
in particular for “composite” algorithms that combine different trial moves.
Therefore, we suggest that it is good practice to impose detailed balance

*In what follows we will always use reduced units, unless explicitly indicated otherwise.
We, therefore, omit the superscript * to denote reduced units.

when writing a code. Of course, if subsequently it turns out that the' pet-
formance of a working program can be improved considerably by using a
"palance-only” algorithm, then it is worth implementing it. At present, we
are not aware of examples in the literature where a “balance-only” algorithm
is shown to be much faster than its “detailed-balance” counterpart.

3.3 Trial Moves

Now that we have specified the general structure of the Metropolis algo-
rithm, we should consider its implementation. We shall not go into the
problem of selecting intermolecular potentials for the model‘ system under
study. Rather, we shall simply assume that we have an atomic or molec_ullar
model system in a suitable starting configuration and that we have specified
all intermolecular interactions. We must now set up the underlying Markov
chain, that is, the matrix «. In more down to earth terms: we must decide
how we are going to generate trial moves. We should distinguish between
trial moves that involve only the molecular centers of mass and those that
change the orientation or possibly even the conformation of a molecule.

3.3,1 Translational Moves

We start our discussion with trial moves of the molecular centers of mass.
A perfectly accepf.?i%le method for creating a trial displacement ig, to add
random numbers between —A/2 and +A/2 to the x,y, and z coordinates of
the molecular center of mass:

x{ = xi+A(Ranf—0.5)
yi — yi+A(Ranf - 0.5)
z{ — zi+A{Ranf-0.5), (3.3.1)

where Ranf are random numbers uniformly distributed between 0 and 1.
Clearly, the reverse trial move is equally probable (hence, o is symmetric).?
We are now faced with two questions: how large should we choose A?_- and
should we attempt to move all particles simultaneously or one at a time?
In the latter case we should pick the molecule that is to be moved at ran-
dom to ensure that the underlying Markov chain remains symmetric. All

6 Although almost all published MC simulations on atomic and molecular systems generate
trial displacements in a cube centered around the original center of mass position, this is by
no means the only possibility. Sometimes, it is more convenient to generate trial moves in a
spherical volume, and it is not even necessary that the distribution of trial moves in such a
volume be uniform, as long as it has inversion symmetry. For an example of a case where
another sampling scheme is preferable, see ref. [55].
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other things being equal, we should choose the most efficient sampling pro-
* cedure. But, to this end, we must first define what we mean by efficient sam-
pling. In very vague terms, sampling is efficient if it gives you good value
for money. Good value in a simulation corresponds to high statistical ac-
curacy, and “money” is simply money: the money that buys your computer
time and even your own fime. For the sake of the argument, we assume
the average scientific programmer is poorly paid. In that case we have to
worry only about your computer budget.” Then we could use the following
definition of an optimal sampling scheme: a Monte Carlo sampling scheme
can be considered optimal if it yields the lowest statistical error in the quan-
tity to be computed for a given expenditure of computing budget. Usually,
computing budget is equivalent to CPU time.

From this definition it is clear that, in principle, a sampling scheme may
be optimal for one quantity but not for another. Actually, the preceding def-
inition is all but useless in practice (as are most definitions}. For instance,
it is just not worth the effort to measure the error estimate in the pressure
for a number of different Monte Carlo sampling schemes in a series of runs
of fixed length. However, it is reasonable to assume that the mean-square
error in the observables is inversely proportional to the number of uncorre-
lated configurations visited in a given amount of CPU time. And the number
of independent configurations visited is a measure for the distance covered
in configuration space. This suggests a more manageable, albeit rather ad
hoc, criterion to estimate the efficiency of a Monte Carlo sampling scheme:
the sum of the squares of all accepted trial displacements divided by com-~
puting time. This quantity should be distinguished from the mean-squared
displacement per unit of computing time, because the latter quantity goes to
0 in the absence of diffusion (e.g., in a solid or a glass), whereas the former
does not.

Using this criterion it is easy to show that for simulations of condensed
phases it is usually advisable to perform random displacements of one par-
ticle at a time (as we shall see later, the situation is different for correlated
displacements). To see why random single-particle moves are preferred,
consider a system of N spherical particles, interacting through a potential
energy function 2 (x™ ). Typically, we expect that a trial move will be rejected
if the potential energy of the system changes by much more than kgT. At
the same time, we try to make the Monte Carlo trial steps as large as is pos-
sible without having a very low acceptance. A displacement that would, on
average, give rise to an increase of the potential energy by kgT would still
have a reasonable acceptance. In the case of a single-particle trial move, we

7Stll, we should stress that it is not worthwhile to spend a lot of time developing a fancy
computational scheme that will be only marginally better than existing, simpler schemes, unless
your program will run very often and speed is crucial.
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where the angle brackets denote averaging over the ensemble and the hori-
zontal bar denotes averaging over random trial moves. The second deriva-
tive of I{ has been absorbed into the function f(i{), the precise form of which
does not concern us here. If we now equate {Al{} on the left-hand side of

equation (3.3.2) to kg T, we find the following expression for Av?:
AvZ s kpT/H(U). (3.3.3)

If we attempt to move N particles, one af a time, most of the computation
involved is spent on the evaluation of the change in potential energy. As-
suming that we use a neighbor list or a similar time-saving device (see Ap-
pendix F), the total time spent on evaluating the potential energy change is
proportional to nN, where n is the average number of interaction partners
per molecule. The sum of the mean-squared displacements will be propor-
tional to NAr? ~ NkgT/f(Z{). Hence, the mean-squared displacement per
unif of CPU time will be proportional to kg T/(n f(i{)). Now suppose that we
try to move all particles at once. The cost in CPU time will still be propor-
tional to nN. But, using the same reasoning as in equations (3.3.2) and (3.3.3),
we estimate that the sum of the mean-squared displacements is smaller by a
factor 1/N. Hence the total efficiency will be down by this same factor. This
simple argument explains why most simulators use single-particle, rather
than collective trial moves. It is important to note that we have assumed that
a collective MC trial move consists of N independent trial displacements of
the particles. As will be discussed in section 14.2, efficient collective MC
moves cant be constructed if the trial displacements of the individual parti-
cles are not chosen independently.

Next, consider the choice of the parameter A which determines the size
of the trial move. How large should A be? If it is very large, it is likely
that the resulting configuration will have a high energy and the trial move
will probably be rejected. If it is very small, the change in potential energy
is probably small and most moves will be accepted. In the literature, one
often finds the mysterious statement that an acceptance of approximately
50% should be optimal. This statement is not necessarily true. The opti-
mum acceptance ratio is the one that leads to the most eificient sampling of
configuration space. If we express efficiency as mean-squared displacement
per CPU time, it is easy to see that different Monte Carlo codes will have
different optimal acceptance ratios. The reason is that it makes a crucial dif-
ference whether the amount of computing required to test whether a trial
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Figure 3.4: (left) Typical dependence of the mean-squared displacement of a
particle on the average size A of the trial move. (right) Typical dependence
of the computational cost of a trial move on the step-size A. For continuous
potentials, the cost is constant, while for hard-core potentials it decreases
rapidly with the size of the trial move.

move is accepted depends on the magnitude of the move (see Figure 3.4). In
the conventional Metropolis scheme, all continuous interactions have to be
computed before a move can be accepted or rejected. Hence, for continuous
potentials, the amount o’f?omputation does not depend on the size of a trial
move. In contrast, for simulations of molecules with hard repulsive cores, a
move can be rejected as soon as overlap with any neighbor is detected. In
that case, a rejected move is cheaper than an accepted one, and hence the av-
erage computing time per trial move goes down as the step size is increased.
As a result, the optimal acceptance ratio for hard-core systems is apprecia-
bly lower than for systems with continuous interactions. Exactly how much
depends on the nature of the program, in particular on whether it is a scalar
or a vector code (in the latter case, hard-core systems are treated much like
continuous systems}, on how the information about neighbor lists is stored,
and even on the computational “cost” of random numbers_and exponenti-
ation. The consensus seems to be that for hard-core systems the optimum
acceptance ratio is closer to 20 than to 50%, but this is just another rule of
thumb that should be checked.?

A distinct disadvantage of the efficiency criterion discussed previously
is that it does not allow us to detect whether the sampling of configuration
space is ergodic. To take a specific example, suppose that our system consists
of a number of particles that are trapped in different potential energy min-

8In section 14.3.1, we show how, even in the case of continuous potentials, it is possible to
refect trial moves before all interactions have been evaluated. With such a sampling scheme, the
distinction between the sampling of hard-core and continuous potentials all but disappears.

ima. Clearly, we can sample the vicinity of these minima quite well and still
have totally inadequate sampling of the whole of the configuration space. A
criterion that would detect such nonergodicity has been proposed by Moun-
tain and Thirumalai [56]. These authors consider the difference between the
variance of the time average of the (potential} energy of all particles. Let us
denote the time average of the energy of particle j in time interval t by e;(t):

e5(t) = -

t
tJ dt’ e;(t").

0

And the average single-particle energy for this interval is

1

N &

g(t) = e;s(t).

The variance of interest is
;N
OR(1) = 55 2 [es(t) —2(t)”.
j=1

If all particles sample the whole of configuration space, o2 (t) will approach
zero as t — oo
' o (t)/0%(0) — Te/t,

where T isa measﬁire for the characteristic time to obtain uncorrelated sam-
ples. However, if the system is nonergodic, as in a (spin} glass, o will not
decay to 0. The work of Mountain and Thirumalai suggests that a good
method for optimizing the efficiency of a Monte Carlo scheme is to minimize
the product of Te and the computer time per trial move. Using this scheme,
Mountain and Thirumalai concluded that, even for the Lennard-Jones sys-
tem, a trial move acceptance of 50% is far from optimal. They found that an
acceptance probability of 20% was twice as efficient. :

Of course, a scheme based on the energy fluctuations of a particle is not
very useful to monitor the rate of convergence of simulations of hard-core
systems. But the essence of the method is not that one measures the en-
ergy but any quantity that is sensitive to the local environment of a particle.
For instance, a robust criterion would look at the convergence of the time-
averaged Voronoi signature of a particle. Different environments yield dif-
ferent signatures. Only if every particle samples all environments will the
variance of Voronoi signatures decay to 0.

Of course, in some situations an efficiency criterion based on ergodicity
is not useful. By construction, it cannot be used to optimize simulations of
glasses. But also when studying interfaces (e.g., solid-liquid or liquid-vapor)
the ergodicity criterion would suggest that every particle should have ample



time to explore both coexisting phases. This is clearly unnecessary: ice can
be in equilibrium with water, even though the time of equilibrationis far too
short to allow complete exchange of the molecules in the two phases.

3.3.2 OQrientational Moves

If we are simulating molecules rather than atoms we must also generate trial
moves that change the molecular orientation. As we discussed already, it
almost requires an effort for generating translational trial moves with a dis-
tribution that does not satisfy the symmetry requirement of the underlying
Markov chain. For rotational moves, the situation is very different. It is
only too easy to introduce a systematic bias in the orientational distribution
function of the molecules by using a nonsymmetrical orientational sampling
scheme, Several different strategies to generate rotational displacements are
discussed in [19]. Here we only mention cne possible approach.

Rigid, Linear Molecules

Consider a system consisting of N linear molecules. We specify the orien—

tation of the ith molecule by a unit vector fi;. One possible procedure to
change 1i; by a small, random amount is the following. First, we generate a
unit vector ¥ with a randoim orientation. This is quite easy to achieve (see
Algorithm 42). Next we multiply this random unit vector ¢ by a scale factor
Y. The magnitude of v determines the magnitude of the trial rotation. We
now add y¥ to {i;. Let us denote the resulting sum vector by &: t = y¢ + {i;.
Note that t is not a unit vector. Finally, we normalize t, and the result is our
trial orientation vector @i]. We still have to fix v, which determines the ac-
ceptance probability for the orientational trial move. The optimum value of
v is determined by essentially the same criteria as for translational moves.
We have not yet indicated whether the translational and orientational trial
moves should be performed simultaneously. Both procedures are accept-
able. However, if rotation and translation correspond to separate moves,
then the selection of the type of move should be probabilistic rather than
deterministic.

Rigid, Nonlinear Molecules

Only slightly more complex is the case of a nonlinear, rigid molecule. It is
conventional to describe the orientation of nonlinear molecules in terms of
the Eulerian angles (¢, 8,P). However, for most simulations, use of these
angles is less convenient because all rotation operations should then be ex-
pressed in terms of trigonometric functions, and these are computationally
expensive. It is usually better to express the orientation of such a molecule

in terms of quaternion parameters (for a discussion of quaternions in the
context of computer simulation, see [19]). The rotation of a rigid body can
be specified by a quaternion of unit norm Q. Such a quaternion may be
thought of as a unit vector in four-dimensional space:

Q = (do,d1,92,93) withqi+gi+q5+q5=1. (3.3.4)

There is a one-to-one correspondence between the quaternion components
gy and the Eulerian angles,

o = concos (222)
o = e (25Y)
o = sndon(05Y)
qs = cosgsin (@) | (3.3.5)

“and the rotation matrix R, which describes the rotation of the molecule-fixed

vector in the laboratory frame, is given by (see, e.g., [67])

q+ai—di—a3  2(dig2 —qoqs)  2(d1q3 + doqz)
R=1[ 2a1925+qoq3) qg—ai+a3—ai 2(d293—qods)
2{avds —dodz)  2(dz2q3 +doq1) aF—ai — a3+ a3
(3.3.6)
To generate trial rotations of nonlinear, rigid bodies, we must rotate the vec-
tor (4o, g1, g2, g3) on the four-dimensional {4D) unit sphere. The procedure
just described for the rotation of a 3D unit vector is easily generalized to 4D.
An efficient method for generating random vectors uniformly on the 4D unit
sphere has been suggested by Vesely [57].

Nonrigid Molecules

If the molecules under consideration are not rigid then we must also con-
sider Monte Carlo trial moves that change the internal degrees of freedom
of a molecule. In practice, it makes an important difference whether we
have frozen out some of the infernal degrees of freedom of a molecule by
imposing rigid constraints on, say, bond lengths and possibly even some
bond angles. If not, the situation is relatively simple: we can carry out nor-
mal trial moves on the Cartesian coordinates of the individual atoms in the
molecule (in addition to center-of-mass moves). H some of the atoms are
strongly bound, it is advisable to carry out small trial moves on those par-
ticles (no rule forbids the use of trial moves of different size for different



atoms, as long as the moves for one particular atom are always sampled
from the same distribution).

However, when the bonds between different atoms become very stiff,
this procedure does not sample conformational changes of the molecule effi-
ciently. In Molecular Dynamics simulations it is common practice to replace
very stiff inframolecular interactions with rigid constraints (see Chapter 15).
For Monte Carlo simulations this is also possible. In fact, elegant techniques
have been developed for this purpose [58]. However, the corresponding MDD
techniques [59] are so much easier to use, in particular for large molecules,
that we cannot recommend the use of the Monte Carlo technique for any but
the smallest flexible molecules with internal constraints.

To understand why Monte Carlo simulations of flexible molecules with
a number of stiff (or even r1g1d) bonds (or bond angles} can become compli-
cated, let us return to the original expression (3:1.2) for a thermal average of
a function A(r™):

JdpNde™N A(rM) exp[-BH(pN, ™)

W= [dpNdr™ exp[—pH(pN, )]

If we are dealing with flexible molecules, it is convenient to perform
Monte Carlo samplmg not on the Cartesian coordinates r™ but on the gen-
eralized coordinates q™, where g may be, for instance, a bond length or an
internal angle. We must now express the Hamiltonian in equation (3.1.2) in
terms of these generalized coordinates and their conjugate momenta. This
is done most conveniently by first considering the Lagrangian £ = K — U,
where K is the kinetic energy of the system (K = } (1/2)mi?) and i the
potential energy. When we transform from Cartesian coordinates r to gener-
alized coordinates q, £ changes to

N
1 N
L = Mi— —qadp —U(q"
2 3™ 5q, 5ag e ~Hl0")
= 34-G-q-Ulq") . (3.3.7)
In the second line of equation (3.3.7) we have defined the matrix G. The

momenta conjugate to q™ are easily derived using

p* = %
<P
This yields p* = Gapdp. We can now write down the Hamiltonian H in
terms of the generalized coordinates and conjugate momenta:

1
Hip,q) = zp-G‘1 p UM (3.3.8)

If we now insert this form of the Hamiltonian into equation (3.1.2), and carry
out the (Gaussian) integration over the momenta, we find that

[ dq™ expl—pu/(g™ ™) [dpNexp(—pp- G - p/2)
_quNdp exp(—BH)
_ [dqMexpl—pU(qMIA(gM)IGI
- JdaVdpN exp(—pH) (3.3.9)

(A)

The problem with equation (3.3.9) is the term IG|Z. Although the determi-
nant |G| can be computed fairly easily for small flexible molecules, its evalu-
ation can become quite an unpleasant task in the case of larger molecules.

Thus far we have considered the effect of introducing generalized co-
ordinates only on the form of the expression for thermal averages. If we
are considering a situation where some of the generalized coordinates are
actually constrained to have a fixed value, then the picture changes again,
because such hard constraints are imposed at the level of the Lagrangian
equations of motion. Hard constraints therefore lead to a different form
for the Hamiltonian in equation (3.3.8) and to another determinant in equa-
tion (3.3.9). Again, all this can be taken into account in the Monte Carlo sam-
pling (see [58]). An example of such a Monte Carlo scheme is the concerted
rotation algorithm that has been developed by Theodorou and co-workers
[60] to simulate polymer melts and glasses (see section 13.4.4). The idea of
this algorithm is torselect a set of adjacent skeletal bonds in a chain (up to
seven bonds). These bonds are given a collective rotation while the rest of
the chain is unaffected. By comparison, Molecular Dynamics simulations
of flexible molecules with hard constraints have the advantage that these
constraints enter directly into the equations of motion (see [59]). The dis-
tinction between Molecular Dynamics and Monte Carlo, however, is more
apparent than real, since it is possible to use MD techniques to generate col-
lective Monte Carlo moves (see section 14.2). In Chapter 13, we shall discuss
other Monte Carlo sampling schemes that are particularly suited for flexible
molecules.

3.4 Applications

In this section we give several case studies using the basic NVT Monte Carlo
algorithm.

Case Study 1 (Equation of State of the Lennard-Jones Fluid)

Cne of the more important applications .of molecutar simulation is to com-
pute the phase diagram of a given medel system. In fact, in Chapter 8§ sev-
eral numerical technigues that have been developed specifically to study
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phase transitions will be discussed. It may not be immediately obvious to
" the reader, however, that there is any need for the sophisticated numerical
schemes presented in Chapter 8. In this Case Study, we illustrate some of
the problems that occcur when we use standard Monte Carlo simulation to
determine a phase diagram. As an example, we focus on the vapor-liquid
curve of the Lennard-Jones fluid. Of course, as was already menticned in
section 3.2.2, the phase behavior is quite sensitive to the detailed form of the
intermolecular potential that is used. In this Case Study, we approximate the
full Lennard-Jones potential as follows:

i) r <
u(r) _‘{ 0 T > Te,

where the cutoff radius v is set to half the box length. The coniribution of
the particles beyond this cutoff is estimated with the usual tail corrections;
that is, for the energy

and for the pressure

w1612/ ¥\ 1Y
P = 3P [3 (Tc) (rc) ]

The equation of state of the Lennard-Jones fluid has been investigated by
many groups using Molecular Dynamics or Monte Carlo simulations starting
with the work of Wood and Parker [49]. A systematic study of the equation of
state of the Lennard-Jones fluid was reported by Verlet [13]. Subseguently,
many more studies have been published. In 1979, the data available at that
time were compiled by Nicolas et al. [61] into an accurate equation of state.
This equation has been refitted by Johnson ef al. [62] in-the light of more
recent data. In the present study we compare our numerical results with the
equation of state by Johnson ef al.

We performed several simulations using Algorithms 1. and 2. During the
simulations we determined the energy per particle and the pressure. The
pressure was calculated using the virial

_p, i
P—ﬁ+v, (3.4.1)
where the virial is defined by
T '
vir =3 ; ;f[rij)  1yj, | - {3.4.2)
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Figure 3.5: Equation of state of the Lennard-Jones fluid. (left) Isotherm at
T = 2.0. (right) Isotherm below the critical temperature (T = 0.9); the hori-

- zontal line is the saturated vapor pressure and the filled circles indicate the

densities of the coexisting vapor and liquid phases. The solid curve repre-
sents the equation of state of Johnson et al. [62] and the circles are the results
of the simulations (N = 500). The errors are smaller than the symbol size.

where f(ry;) is the intermolecular force. Figure 3.5 (left) compares the pres-
sure as obtained from a simulation above the critical temperature with the
equation of state ofdohnseon ef al. [62]. The agreement is excellent (as is to
be expected).

Figure 3.5 {right) shows a typical isotherm below the critical tempera-
ture. If we cool the system below the critical temperature, we should expect
to observe vapor-liquid coexistence. However, conventicnal Monte Carlo or
Molecular Dynamics simulations of small model systems are not suited 1o
study the coexistence between two phases. Using the Johnson equation of
state, we predict how the pressure of a macroscopic Lennard-Jones system
would behave in the two-phase region (see Figure 3.5). For densities inside
the coexistence region the pressure is expected to be constant and equal to
the saturated vapor pressure. If we now perform a Monte Carlo simulation
of a finite system (500 LJ particles), we.find that the computed pressure is
not at ali constant’in the coexistence region (see Figure 3.5). In fact we ob-
serve that, over a wide density range, the simulated system is metastable
and may even have a negative pressure. The reason is that, in a finite sys-
tem, a relatively important free-energy cost is associated with the creation
of a liquid-vapor interface. So much so that, for sufficiently small systems,
it is favorable for the system not to phase separate at all [83]. Clearly these
problems will be: most severe for small systems and in cases where the in-
terfacial free energy is large. For this reason, standard NVT-simulations are
not recommended to determine the vapor-liquid coexistence curve or, for
that matter, any strong first-order phase transition.
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To determine the liquid-vapor coexistence curve we should determine the
" equation of state for a large number of state points outside the coexistence
region. These data can then be fitted to an analytical equation of state. With
this equation of state we can determine the vapor-liquid curve (this is exactly
the procedure used by Nicolas et al. [61] and Johnson et al. [62]).

Of course, if we simulate a system consisting of a very large number of
particles, it is possible to simulate a liquid phase in coexistence with its vapor.
However, such simulations are quite time consuming, because it takes a long
time to equilibrate a two-phase system.

Case Study 2 (Importance of Detailed Balance)
For a Monte Carlo simulation to sample points in configuration space accord-
ing to their correct Boltzmann weight, it is sufficient, but not necessary, to im-
pose the detailed-balance condition on the sampling algorithm. Of course,
as the condition of detailed balance is stronger than strictly necessary, it is
not excluded that correct sampling schemes exist that viclate detailed bal-
ance. However, unless one can actually prove that a non-detailed-balance
scheme yields the correct distribution, the use of such schemes is strongly
to be discouraged. Even seemingly reasonable schemes may give rise to
serious, systematic errors.

Here we give an example of such a scheme. Consider an ordinary N,V,T
move; a new position is generated by giving a randomly selected particle,
say i, a random displacement: \

Xn(l) = %o (i) + A (Ranf — 0.5),

where A, is twice the maximum displacement. We now make a small error
and generate a new position using

%n(i) = Xo(i) + A (Ranf —0.0)  wrong!

We give the particles only a positive displacement. With such a move de-
tailed balance is violated, since the reverse move — putting the particle back
at x, — is not possible. )

For the Lennard-Jones fluid we can use the program of Case Study 1

to compare the two sampling schemes. The resulis of these simulations
are shown in Figure 3.6. Note that, at first sight, the results of the incor-
rect scheme look reasonable; in fact, at low densities the results of the two
schemes do not show significant differences. Bui at high densities the wrong
scheme overestimates the pressure. It is important to note that the incorrect
scheme leads to a systematic error that does not disappear when-we per-
form fonger simulations.

This example illustrates that one can generate numerical results that fook
reasonable, even with an incorrect sampling scheme. For this reason, it is
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Figure 3.6: Equation of state of the Lennard-Jones fluid (T = 2.0); compari-
son of a displacement scheme that obeys detailed balance (circles) and one
that does not (squares). Both simulations have been performed with 500
particles. The solid curve is the equation of state of Johnson et al. [62]. The
figure at the left corresponds to the low-pressure regime. The high-pressure
regime is shown in the right-hand figure, ‘

important always to compare the results obtained with a new Monte Carlo
program with known numerical results or, better still, with exact results that
may be known in sgme limiting case {dilute vapor, dense solid, efc.).

In the present example, ithe error due to the neglect of detailed balance is
quite obvious. In many cases, the effects are less clear. The most common
source of non-detailed-balance sampling schemes is the following: in many
programs, we can choose from a repertoire of trial moves (e.g., translation,
rotation, volume changes). It is recommended that these trial moves are not
carried out in fixed order, because then the reverse sequence is impossible
and detailed balance is no longer satisfied.’

In practice one often does not know a priori the optimal maximum dis-
placement in a Monte Carlo simulation. A practical selution is to adjust during
the simulation the maximum displacement in such a way that the optimum
acceptance probability is obtained. The ideal situation is to determine this
optimum during the equilibration. However, if one would keep adjusting the
maximum step-size during a production run, then cne would violate detailed
balance [65]. For example, if from one move to the next, the maximum dis-
placement is decreased, then the a priori probability for a particle to return
to its previous position could be zero. Hence, if one would change the max-
imum displacement after every Monte Carlo step serious errors are to be
expected. Of course, if one changes the maximum displacement only a few

91t has been shown [64] that in this case the detailed-balance condition is indeed sufficient
but not necessary to maintain equilibrium.



times during the simulation, then the error will be negligible. Yet, it is better to
-stay on the safe side and never change the maximum displacement during
the projection run. -

Case Study 3 (Why Count the Old Configuration Again?)

A somewhat counterintuitive feature of the Metropolis sampling scheme is
that, if a trial move is rejected, we should once again count the contributions
of the old configuration to the average that we are computing (see accep-
tance rule {3.1.18}). The aim of this Case Study is to show that this recount-
ing is really essential. In the Metropolis scheme the acceptance rule for a
move fromotonis

acclo =+ n) = exp{—BU{n)—Ulo}l} U{n)>U(o)
1

These acceptance rules lead to a transition probability

o= n) = exp{—B(n)—-Ulo)l} Un)>Ulo)
= 1 Uin) < ilo).

Note that this transition probability must be normalized:

Zﬂ:[o—)n):l. ~

From this normalization it follows that the probability that we accept the old
configuration again is by definition

7o —= 0] =1 —Z'rc(o-—:»n).
n#o

This last equation implies that we should count the contribution of the old
configuration again. .

it is instructive to use the Lennard-Jones program from Case Study 1 to
investigate numerically the error that is made when we only include accepted
configurations in cur averaging. In essence, this means that in Algorithm 2
we continue attempting to displace the selected particle until a trial move
has been accepted.'’ In Figure 3.7 we compare the results of the correct
scheme with those obtained by the scheme in which we continue to displace
a particle until a move is accepted. Again the results look reasonable, but
the figure shows that large, systematic errots are being made.

0Lt is easy to see that this approach leads to the wrong answer if we try to compute the
average energy of a two-level system with energy levels Ep and E; . If we include only accepted
trial moves in our averaging, we would find that (E}=(Eq+E;)/2, independent of temperature.
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Figure 3.7: Equation of state of the Lennard-Jones fluid (T = 2.0); compar-
ison of a scheme in which particles are displaced until a move is accepted
(squares) with the conventional scheme (circles). Both simulations have been
performed with 108 particles. The solid curve is the equation of state of
Johnson et al. [62]. The left figure is at low pressure and the right one at high
pressure.

One of the important disadvantages of the Monte Carlo scheme is that
it does not reproduce the natural dynamics of the particles in the system.
However, sometirités this limitation of the method can be made to work to
our advantage. In Example 1 we show how the equilibration of a Monte
Carlo simulation can be speeded up by many orders of magnitude through
the use of unphysical trial moves.

Example 1 (Mixture of Hard Disks)

In a Molecular Dynamics simulation of, for instance, a binary (A — B) mixture
of hard disks (see Figure 3.8), the efficiency with which configuration space
is sampled is greatly reduced by the fact that concentration fluctuations de-
cay very slowly {typically the relaxation time © ~ Dag /A%, where Dag is the
mutual diffusion coefficient and A is the wavelength of the concentration fluc-
tuation). This implies that very long runs are needed to ensure equilibration
of the local composition of the mixture. In solids, equilibration may not take
place at alf (even on time scales accessible in nature). In contrast, in a Monte
Carlo simulation, it is permissible to carry out trial moves that swap the iden-
tities of two particles of species A and B. Such moves, even if they have only
a moderate rate of acceptance (a few percent will do), greatly speed up the
sampling of concentration fluctuations.

e
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Figure 3.8: A mixture of hard disks, where the identities of two particles are
swapped.

3.5 Questions and Exercises

Question 7 (Reduced Units) Tiypical sets of Lem';ard—]ones parameters for argon

and krypton are car = 3.4 A, ear/kp =119.8 Kand oxr =3.38 4, ex,/kg =
164.0 K [19].

1. At the reduced temperature T* = 2.0, what is the temperature in kelvin of
argon and krypton?

2. A typical time step for MD is At* = 0.001. What 15 this in Sl units for argon
and kryplon?

3. If we simulate argon at T = 278 K and density p = 2000 kg/m> with-a
Lennard-Jones potential, for which conditions of krypton can we use the same

data? If we assume ideal gas behavior, compute the pressure in reduced and
normal units.

4, List the main reasons to use reduced units.

Quesltion 8 (Heat Capacity) Heat capacity can also be calculated from fluctua-
tions in the total energy in the canonical ensemble:

Wy

T (3.5.1)

Cy

1. Derive this equation.

2. In a MC NVT simulation, one does not calculate fluctuations in the total

energy but in the potential enerqy. Is it then still possible to calculate the heat
capacity? Explain.

3. Heat capa‘city can be also calculated from differentiating the total energy of a
system with respect to temperature. Discuss the advantages or disadvanfages
of this approach.

B

.

Question 9 (A New Potential) On the planet Krypton, the pair potential between
two Gaia atoms is given by the Lennard-Jones 10-5 potential

wer=se(2)" - (2]

Kryptonians are notoriously lazy and it is therefore up fo you to derive the tail
corrections for the energy, pressute, and chemical potential. If we use this potential
in an MD simulation in the truncated and shifted form we still have a discontinuity
in the force. Why? If you compare this potential with the Lennard-fones potential,
will there be any difference in efficiency of the simulation? (Hint: there are two

effects!) .

Exercise 6 (Calculation of m)

Consider a circle of diameter d surrounded by a square of length 1 (1 > d).
Random coordinates are generated within the square. The value of 7 can
be calculated from the fraction of points that fall within the circle.

1. How can 7t be calcuiated from the fraction of points that fall in the circle?
Remark: the “exact” value of 7t can be computed numerically using
=4 x arctan (1).

2. Complete the small Monte Carlo program to calculate 7 using this
methed.

3. How does the accuracy of the result depend on the ratio 1/d and the
number of generated coordinates? Derive a formula to calculate the
relative standard deviation of the estimate of 7.

4. Why is this not a very efficient method for computing = accurately?
Exercise 7 (The Photon Gas)
The average occupancy number of state j of the photon gas, (ny}, can be
calculated analytically; see equation (2.3.5). It is possible to estimate this
quantity using a Monte Carlo scheme. In this exercise, we will use the fol-
lowing procedure to calculate (n;):
(i) Start with an arbitrary n;.

(ii) Decide at random to perform a frial move to increase or decrease m;
by T.

(iii) Accept the trial move with probability
acc {0 — n) =min (1,exp [—f (U (n) — U (o)}]].
Of course, n; cannot become negativel

1. Does this scheme obey detailed balance when n; = 0?7



