Modeling the fluid dynamics and molecular dynamics

What is 'Fluid Flow'?

When one applies pressure on a solid

- Structure deformation => energy conservation, elastic

When one applies pressure on a fluid

- Molecular collisions => momentum transfer, dissipation.

The number of water molecules in $(10 \text{ nm})^3$ volume ? How about in $(1 \mu \text{m})^3$? Challenges of MD --

Simulation of methane in ice in 10x10x10 nm³ volume for 2 μ s

Walsh, Sum, Wu, Science (2009)

How to model the dynamics of macromolecules in a solution ? Coarse-grain : Group many water molecules as an effective particle <u>Dissipative particle dynamics</u>, <u>Multi-particle collision dynamics</u>

Continuum : Solve the Navier-Stokes equation by <u>Finite Volume</u>, <u>Finite</u> <u>Element</u>, <u>Boundary integral</u>

Pseudo-continuum: Lattice Boltzmann

Cost ~O(# of elements)

Continuum Fluid Modeling

Particle motion perturbs and contributes to the overall velocity field

$$\Delta \vec{\mathbf{v}}(\vec{r}, \vec{r}_0, \vec{f}_0) = \Delta \vec{\mathbf{v}}_s(\vec{r} - \vec{r}_0) + \Delta \vec{\mathbf{v}}_W(\vec{r}, \vec{r}_0) = \mathbf{\Omega}(\vec{r}, \vec{r}_0) \cdot \vec{f}_0$$
Free space Wall correction $\sqrt{\mathbf{v}}$ Force \mathbf{S} tokes Flow
$$0 = -\nabla p + \eta \nabla^2 \vec{\mathbf{v}}_W$$

$$0 = \nabla \cdot \vec{\mathbf{v}}_W$$
Solved w/
Finite Element Method
HI is dependent on particle positions as a function of time
$$\mathbf{Wall}$$

Multi-Scale Modeling Approach

2 nm

Capture essential physics and optimize computational complexity Flow timescale ~ minutes => coarse-grained model

Coarse-grained DNA Molecule

DNA molecule - short length scale: double helix long length scale: flexible polymer

Model parameters matched to material specific properties of TOTO-1 stained λ -DNA

Approximate DNA as a *Worm-like Chain*

• Molecular scale features are coarse-grained

• Blobs interact with each other through Elastic spring 'Soft' excluded volume Hydrodynamic interactions contour length ~ $o(10-10^2) \mu m$ radius of gyration ~ $o(1) \mu m$

 $\xi_p\approx 50~nm$

Brownian Dynamics and Hydrodynamics

$$d\vec{R} = \left[\vec{U} + \frac{1}{k_B T} \mathbf{D} \cdot \vec{F} + \nabla \cdot \mathbf{D}\right] dt + \sqrt{2} \mathbf{B} \cdot d\vec{W}$$

Flow Field Force Drift Brownian

Solve Continuum Hydrodynamics

Diffusion tensor is a function of the *instantaneous molecular configuration* and *geometry* of the device

$$\mathbf{D}_{ij} = \frac{k_B T}{\zeta} (\mathbf{I} \delta_{ij} + \zeta \Omega_{ij}) \qquad \mathbf{Cost} \sim \mathbf{O}(N^{2.2})$$

 ζ : particle friction coef.

 $\mathbf{\Omega}_{ij}$: hydrodynamic interaction tensor

Thermal Brownian Motion

Fluctuation-dissipation theorem couples hydrodynamics to Brownian forces

$$\sum_{j=1}^{N_h} \mathbf{B}_{ij} \mathbf{B}_{kj} = \mathbf{D}_{ik}$$

Brownian Dynamics and Hydrodynamics

$$d\vec{R} = \left[\vec{U} + \frac{1}{k_B T} \mathbf{D} \cdot \vec{F} + \nabla \cdot \mathbf{D}\right] dt + \sqrt{2} \mathbf{B} \cdot d\vec{W}$$

Flow Field Force Drift Brownian

Solve Continuum Hydrodynamics

Diffusion tensor is a function of the *instantaneous molecular configuration* and *geometry* of the device

$$\mathbf{D}_{ij} = \frac{k_B T}{\zeta} (\mathbf{I} \delta_{ij} + \zeta \boldsymbol{\Omega}_{ij}) \qquad \mathbf{Cost} \sim \mathbf{O}(N^{2.2})$$

 ζ : particle friction coef.

 $\mathbf{\Omega}_{ij}$: hydrodynamic interaction tensor

Thermal Brownian Motion

Fluctuation-dissipation theorem couples hydrodynamics to Brownian forces

$$\sum_{j=1}^{N_h} \mathbf{B}_{ij} \mathbf{B}_{kj} = \mathbf{D}_{ik}$$

DNA in microflow : Flow-induced DNA migration

Chain stretch when *flow shear rate > (relaxation time)*⁻¹ Steady state is reached after 100 s

Chen et al., Macromolecules (2007)

DNA distribution in microchannel

DNA Separation in Microcapillary

λ-DNA in microcapillary flowSugarman & Prud'homme (1988)Chen et al.(2005)

Detection points at 25 cm and 200 cm

$$R_f = \frac{\text{avg. DNA velocity}}{\text{max. fluid velocity}}$$

Longer DNA → higher velocity Separation by MW is possible

Key challenges : resolution and speed **Cost** ~ $O(N^{2.2})$

T2 DNA after 100 s oscillatory Poiseuille flow

Modeling Cell Dynamics in Microflow

Flow separation of soft particles / droplets by size, elasticity, shape Mechanisms : Deformation – flow interactions, fluid inertia

Elasticity

Size

Hsu and Chen, J. Chem. Phys., (2010); YL Chen, RSC Advances (2014)

Multi-Particle Collision

Fluid hydrodynamics by simulating fluid particle dynamics in two steps:

Streaming – Newton EOM $\mathbf{r}_i(t + \Delta t) = \mathbf{r}_i(t) + \Delta t \mathbf{v}_i(t),$

Collision – thermalize fluid velocities after collisions

 $\mathbf{v}_i(t + \Delta t) = \mathbf{u}(t) + \mathbf{v}_{i,\text{ran}} - \sum_{\text{cell}} \mathbf{v}_{i,\text{ran}} / N_c$ thermostat

Angular momentum conservation

$$+ \left\{ m\Pi^{-1} \sum_{j \in \text{cell}} \left[\mathbf{r}_{j,\text{c}} \times (\mathbf{v}_j - \mathbf{v}_j^{\text{ran}}) \right] \times \mathbf{r}_{i,\text{c}} \right\}$$

$$\mathbf{u} = \frac{m\sum_{i=1}^{N_{\mathrm{c}}} \mathbf{v}_{i} + m_{\mathrm{m}} \sum_{i=1}^{N_{\mathrm{m}}} \mathbf{w}_{i}}{N_{\mathrm{c}}m + N_{\mathrm{m}}m_{\mathrm{m}}},$$

Momentum exchange between fluid particle and monomers

Gompper et al., Adv. Polymer Sci. 221 (2009)

MPC modeling of RBC dynamics

MPC has been applied to characterized the shape change and dynamic change of elastic particles with different membrane viscosity and flow rate

Gompper et al., Adv. Polymer Sci. 221 (2009)

Boundary Integral Method

Solving for the flow field due to a cell with a boundary integral representation

Stokes flow of point sources

$$u_{j}^{D}(\mathbf{x}_{0}) = -\frac{1}{8\pi\mu} \iint_{P^{+},C,B,T} G_{ij}(\mathbf{x},\mathbf{x}_{0}) f_{i}^{D}(\mathbf{x}) \,\mathrm{d}S(\mathbf{x}) + \frac{1}{8\pi} \iint_{P,C,B,T} u_{i}^{D}(\mathbf{x}) T_{ijk}(\mathbf{x},\mathbf{x}_{0}) n_{k}(\mathbf{x}) \,\mathrm{d}S(\mathbf{x}),$$

Stokes flow of point dipoles + sources

$$G_{ij}(\mathbf{x}, \mathbf{x}_0) = \frac{\delta_{ij}}{|\mathbf{x} - \mathbf{x}_0|} + \frac{(x_i - x_{0_i})(x_j - x_{0_j})}{|\mathbf{x} - \mathbf{x}_0|^3}$$

$$T_{ijk}(\mathbf{x}, \mathbf{x}_0) = -6 \frac{(x_i - x_{0_i})(x_j - x_{0_j})(x_k - x_{0_k})}{|\mathbf{x} - \mathbf{x}_0|^5}$$

Barthes-Biesel et al., J. Comp. Phys (1989) Pozrikidis, Modeling and Simulation of Capsules and Biological Cells (2003)

Application of Immersed Boundary Method

The immersed boundary method has been applied to the flow of o(100) vesicles.

Qualitatively captures the Fahraeus-Lindqvist effect.

Limitation : Cells do not come too close to each other in the computation. Near-field hydrodynamics require very fine fluid grid.

Doddi & Bagchi, (2009) Pan, Shi, Glowski (2010)

The Boltzmann equation and lattice Boltzmann

Duenweg and Ladd, Adv. In Polymer Sci (2009)

Replace continuum fluid with discrete fluid positions x_i and discrete velocity c_i

 $n_i(r,v,t) =$ fluid velocity distribution function

 $n_i(r+c_i\Delta t,t+\Delta t) = n_i(r,t) + \Delta_i[\boldsymbol{n}(r,t)]$

n function momer distribu

3D, 19-vector model

Hydrodynamic fields are moments of the velocity distribution function

$$\rho = \sum_{i} n_i \quad j = \sum_{i} n_i c_i$$

 $\Pi = \sum_{i} n_i c_i c_i$

Ghost Moments

Boltzmann eqn.

$$\partial_t n + v \cdot \nabla n = \left(\frac{dn}{dt}\right)_{coll}$$

$$\Delta_i[\boldsymbol{n}(r,t)] = \sum_j L_{ij}(n_j - n_j^{eq})$$

 $L_{ij} =$ local collision operator

 $=1/\tau$ in the simplest approx.

Local collisions and propagation

lbe.c

- Hydrodynamics comes from local collisions between fluid particles
- Collisions are uncorrelated between timesteps

$$n_i(r+c_i,t+1) = n_i(r,t) + L_{ij}[n_j(r,t) - n_j^{eq}(r,t)]$$

Common 3D model has 19 velocities c_i : 0, $\pm x$, $\pm y$, $\pm z$, $\pm xz$, $\pm xy$, $\pm yz$

Simulation Steps

- Hydrodynamics comes from local collisions at solid-fluid boundaries
- Collisions are uncorrelated between timesteps

$$n_i(r+c_i,t+1) = n_i(r,t) + L_{ij}[n_j(r,t) - n_j^{eq}(r,t)]$$

- 1. Equilibration of fluid velocity u_i
- Fluid particle collision instant exchange of mass and momentum
- 3. Fluid-solid boundary condition
- 4. Propagation of fluid velocity distribution functions

Solid-Fluid Boundary Conditions

Fluid-Particle Boundary

bnodes.c

Nguyen & Ladd (2002)

Momentum is transferred across the fluid-particle boundary

Solid-Fluid Boundaries

bnodes.c

The Bounce Back Rule No slip - Fluid velocity at wall is zero Fluid site $n_{i'}(r,t+1) = n_i(r,t_+)$ Stationary Wall Wall site $n_i(r+c_i,t+1) = n_{i'}(r+c_i,t_+)$

 $n_i(r,t_+)$ = postcollision distribution of velocity i at r

Pressure-driven flow between parallel plates

Ux

Parabolic velocity profile attained by applying no-slip and constant pressure (momentum flux) to the fluid

Lattice #

 $\nabla p = \eta \nabla^2 \mathbf{u} + \mathbf{f}$

Creeping flow around a fixed particle

V=0.005

Fluid Fluctuations

Brownian motion particularly important for submicron particles

Noises are present for all non-conserved eigenmodes of the DdQq system How to add proper noises that satisfly the fluctuation-dissipation theorem ?

Reference: Adhikari, Stratford, Cates, Wagner (2004)

- 1. Find eigenvectors through Gram-Schmidt orthogonalization
- 2. Find variance of the non-conserved stress and ghost modes
- 3. Apply FDT and generate noise for the c_i

With assumptions : correlations are **k**-independent

stationarity of equal time-correlators

lbe.c

From FDT:
$$\left\langle n'^{a}n'^{b}\right\rangle = \frac{\tau_{a} + \tau_{b} - 1}{\tau_{a}\tau_{b}} \left\langle \delta M^{a} \delta M^{b} \right\rangle$$

 τ_a , τ_b are the relaxation time of the modes a and b

Choosing the thermodynamics of an ideal gas

$$\left\langle \delta M^{a} \delta M^{b} \right\rangle = m_{aj} m_{bj} \frac{kT}{c_{s}^{2}} n_{j}^{eq} \delta_{ab}$$

Follows Poisson statistics

Equilibration ratio of density, velocity, and stress modes

Without ghost modes

"Immersed Boundary Method" + LBM

get_forces.c : hi_force()

Ahlrichs and Dunweg (1998)

- Couple MD simulation of chains with LBM
- At each time step:
 - (1) LBM calculates the flow field
 - (2) Fluid velocity at bead position is calculated by interpolation
 - (3) Friction force on the monomer is calculated

 $F_f = -\zeta(U_p - U_f(x))$

 $\zeta = 6 \pi \eta a$

(4) Momentum change is distributed among the nearest lattice neighbors

(5) Fluctuation is added to the monomers to balance frictional losses

$$<\delta F(x,t)\delta F(x',t') >= 2k_B T \zeta \delta(x-x')\delta(t-t')$$

Afternoon session 1. Using lattice Boltzmann :

- A. How to choose the appropriate parameters.
- B. Generate simple shear flow and Poiseuille flow.
- C. Compare with the analytical results and error estimation.
- D. Coupling LB to a point force monomer and validation of fluid field.

Afternoon session 2. Coupling polymer dynamics with the fluid :

- A. How to choose the appropriate parameters for a polymer.
- B. Incorporating thermal fluctuations to polymer and fluid.
- C. Validating hydrodynamic interactions.
- D. Monomers and polymers in Poiseuille flow. (will they migrate ?)

Headers

header.h Define limit parameters Include all libraries

lbe.h Define fluid parameters

struct.h Define particle datatype and parameters

macro.h Define macros func_proto.h Declare global functions [ylchen@polyui2 LBE]\$ make serial

icc -I/usr/local/intel/mkl/10.0.3.020/include -o aslbe main.o driver.o update.o lbe_update.o bnodes.o bnodes_init.o implicit_force.o lbe.o modes_write.o lub.o velcs_update.o hs3d.o n_list.o objects_init.o objects_map.o clusters.o cluster_force.o cluster_update.o cj_grad.o global_sums.o utils.o output.o initlbe.o init_polymer.o ran_num.o get_forces.o verlet_update.o msg_ser.o -L/usr/local/intel/mkl/10.0.3.020/lib/32 -lmkl_ia32 -lpthread ipo: remark #11000: performing multi-file optimizations ipo: remark #11005: generating object file /tmp/ipo_iccmallY9.o

Intel C compiler Intel math kernel library – vector random number generator

Inputs for the polymer parameters

# of chains Total # of monomers Box size	[ylchen@polyui2 LBE]\$ more init/p_inp.dat		
	<pre># Num_chain num_beads max_x max_y max_z</pre>		
	20 220 20 20 20		
	<pre># spring_type(0=FENE,1=WLC) ev_type(0=HS,1=WCA,2=gaussian)</pre>		
	verlet_type(0=1storder,1=2ndorder) initconfig(1=random,2=stretched)		
Force parameters	1 2 2 1		Force type: spring,
	# H_fene Q_fene	kuhn_length nks	EV
	100 3.0 0.212 19.8		Integration
	# evcutoff fric dt	mon_mass kT	Init configuration
Force parameters	5.0 0.483 0.1 1.0 1	0	
MD integration step	# mon_fext		
	0.0 0.0 0.0	Externally applied forces	
	<pre># write_props write_config write_fluid</pre>		
	1000 1000 1000		
]	Period of output	

```
[ylchen@polyui2 LBE]$ more init/input_file.dat
                                                             # of checkpoints
                             num_modes
                                                             # of steps / checkpoint
 num cycle
               num_step
                                            t_lbe
   1
                   10000
                               0
                                          1.0
                                                             # of output fluid modes
            backflow_flag
                                                             lbe relaxation time
 wall_flag
                             add noise
            0
                                      2
   1
                                                             Wall type: 0 = no walls
  rho
          VX
                 VV
                       VZ
                                                                         1 = \pm v walls
  1.0
          0.0
                0.0
                      0.0
                                Fluid density ratio,
                                                                         2 = +/-yz walls
 mass_fac
              vel_fac
                                velocity ratios
                                                             Backflow
  1.0
             1.0
                           Lubrication cutoff
                                                             Add_noise: 0 = no noise
 lub cut
             del_hy
                           Hi-lubrication factor
                                                                          1 = particle noise
  0.0
            0.001
                                                                         2 = +fluid noise
 sph_fx
             sph_fy
                         sph_fz
                                       External forces on colloids
  0.0
            0.0
                       0.0
 ext fx
             ext_fy
                        ext_fz
                                       External forces on fluid
  0.0
             0.0
                       0.0
 wall_vx
            wall_vy
                          wall_vz
                                       Wall velocities
  0.0
            0.01
                        0.0
  tau
            tau_v
                      tau_g
  1.0
             1.0
                     1.0
                                       Fluid relaxation times for multi-relaxation model
  lub N
              lub T
                         lub R
                        0.43
  0.67
              0.5
                                       Lubrication force parameters
  seed
 2772301
                              Random number seed
```

Run

[ylchen@polyui2 LBE]\$./aslbe > output [ylchen@polyui2 LBE]\$ more output Running on 1 processors Begin driver: proc # 0, task 0 Adding 20 chains, 11 monomer / chain, 220 particles #chain 0 #monomer 0 at (1.159345e+01 4.784072e+00 1.323395e+01) #monomer 1 at (1.036758e+01 6.397857e+00 1.233972e+01) #monomer 2 at (9.074085e+00 6.012436e+00 1.094426e+01) #monomer 3 at (9.058377e+00 7.348096e+00 1.158538e+01) #monomer 4 at (9.685675e+00 8.463016e+00 1.137528e+01) #monomer 5 at (9.408609e+00 9.148439e+00 1.237802e+01) #monomer 6 at (8.566243e+00 1.033286e+01 1.334280e+01) . . . #monomer 216 at (2.670195e+00 2.151291e-01 2.052470e+00) #monomer 217 at (2.376896e+00 1.898285e+01 3.773407e+00) #monomer 218 at (1.162502e+00 2.566756e-01 5.158859e+00) #monomer 219 at (6.259781e-01 1.303433e+00 6.058158e+00) ncycle 0, numcycle 1 Total mass 2.88000e+05 Fluid mass 0.00000e+00Particle mass 0.00000e+00Map updates 1 Front location 1 Max cluster 0 List updates 13 Collision rate 0.000e+00Max collisions 0.000e+00Total momenta 0.00000e+00 0.00000e+00 0.00000e+00 Begin checkpoint 1 End checkpoint 1 Begin data output 1 on 0End data output 1 on 0End driver: proc #:0, task 0 Elapsed time on proc 0: 1.065000e+01 (0.000000e+00 1.065000e+01)

Output

[ylchen@polyui2 LBE]\$ dir data

avg_disp2.datchain_props.12.datchain_props.17.datchain_props.3.datchain_props.8.datmonpos.datavg_props.datchain_props.13.datchain_props.18.datchain_props.4.datchain_props.9.datp_out.000chain_props.0.datchain_props.14.datchain_props.19.datchain_props.5.datchk_f.000properties.datchain_props.10.datchain_props.15.datchain_props.1.datchain_props.6.datchk_p.000run_time.datchain_props.11.datchain_props.16.datchain_props.2.datchain_props.7.datfinal.configu.t0000.vtku.t0000.vtklond0.t0000.vtklond0.t0000.vtklond0.t0000.vtklond0.t0000.vtk

avg_disp2.dat : average monomer MSD, avg velocity avg_props.dat : average chain MSD, Rg2, stretch chain_props.dat : chain COM, Rg2, stretch, MSD chk_f.000: fluid field checkpoint chk_p.000: chain properties checkpoint final.config: final chain configuration monpos.dat: monomer positions and velocities at different times p_out.000: colloid properties properties.000: simulation input parameters run_time.dat: simulation run time bond0_t????.vtk: paraview configuration files for the polymer u_t????.vtk: paraview configuration files for the fluid field.

Appropriate Parameters for lattice Boltzmann

Lattice spacing should be bigger than the solvent molecule mean free path

$$\mathrm{Kn} = l_{\mathrm{mfp}} / \mathrm{dx} << 1$$

Fluid velocity shall not be faster than the speed of momentum propagation (speed of sound)

$$Ma = u / c_s << 1$$

Fluid viscosity must be positive $\eta/\rho = (t_{coll} - \frac{1}{2}) * c_s^2$ LB code parameters: $\rho=36$, $\eta=6$, $c_s^2 = 1/3$ $t_{coll} > 1/2$

Computational time ~ volume => choose the smallest box possible to obtain correct physics (typically L_x at least > 8)

Error ~ $O(dx^2)$

Exercise 1-2: Generate flow between two parallel plates

$$\nabla p = \eta \nabla^2 \mathbf{u} + \mathbf{f}$$

$$u(y) = u_{max} \left(\left(\frac{H}{2}\right)^2 - (y - y_{center})^2 \right)$$

What is the error ?

(at the wall)

Exercise 3: A single monomer (point force) in fluid

The monomer is fixed at a given position, defined in init/init.config

Plot the resulting fluid field using paraview or xmgrace

Compare with the analytical solution in Uofr.dat

What happens if the point force is moved towards the wall ?

Appropriate Parameters for Polymer model

The distance between monomers should be around 1 lattice spacing

 $\sigma \approx dx$

Box size should be > 5 * Polymer radius of gyration

 $L > 5 R_{g}$

Run time should be much longer than the polymer relaxation time to sample equilibrium properties

Exercise 5a: A single monomer (point force) in Poiseuille flow

The monomer is fixed at a given position, defined in init/init.config

Plot the resulting particle trajectory using xmgrace

Exercise 5b: A single dumbbell (point force) in **Poiseuille flow**

A dumbbell is a polymer with only two beads

The dumbbell position can be defined in init/init.config Plot the resulting dumbbell trajectory using xmgrace

Try different initial positions and orientations

Exercise 6ab: Trajectories a large number of monomers and dumbbells in Poiseuille flow

Generate random initial particle positions using

initconfig = 1 in p_inp.dat

Plot the resulting dumbbell trajectories using xmgrace

tail --lines=100 --quiet data/chain_props.*.dat >>
combined_chainprops.dat