Molecular Dynamics

March 18, 2016

Instructor: Prof. Yeng-Long Chen TA: 林子翔 (Tzyy-Shyang Lin) Email: ts.lin.92@gmail.com

What is Molecular Dynamics Simulation?

N-Body computer simulation that numerically integrate the EoM of particles to study the trajectory and behavior of atoms and molecules

Classification of MD

Recipe of MD

Limitation of MD

- Integration error can never be fully eliminated
- Trajectories should not be perceived as directly comparable to experiments, the statistical behavior should be compared
- Many results may be artificial and due to the limitation of models
- For ergodic systems, statistical behavior can be sampled from a single simulation run, but this is not true for non-ergodic systems

Nondimensionalization

- Molecular dynamics is often carried out in nondimensional form
- Equations of motion and potentials are nondimensionalized prior to simulation
- Different systems of different length scales can be simulated with one simulation
- Often the equations are nondimensionalized with the characteristic length σ , thermal energy $k_B T$ and characteristic time τ

Important Aspects in MD Simulations

System Constraints

Microcanonical Ensemble

Canonical Ensemble

Isothermal-isobaric Ensemble

NVE

- $F(X) = -\nabla U(X) = M\dot{V}(t)$
- $V(t) = \dot{X}(t)$
- For every step, the position and velocity is integrated with a symplectic method

NVT

- The total energy of the system is not conserved
- $k_B T = m \langle v^2 \rangle$ • $P(p) = \left(\frac{\beta}{2\pi m}\right)^{3/2} \exp\left(-\frac{\beta p^2}{2m}\right)$
- We need a thermostat to control the temperature

Thermostats

- Rescaling of velocity
- Anderson thermostat
- Berendsen thermostat
- Nose-Hoover thermostat
- Nose-Hoover chains

Other Ensembles

- Replica exchange MD (REMD)
 - For exploring the phase space at low temperature
 - Avoid trapping due to local energy minimum

Other Simulation Methods

• Langevin dynamics

•
$$M\ddot{X} = -\nabla U(X) - \zeta \dot{X} + \sqrt{2\zeta k_B T}R(t)$$

- ζ is damping coefficient
- R(t) is zero-mean delta-correlated stationary Gaussian noise originated from thermal fluctuation
 - $\langle R(t) \rangle = 0$
 - $\langle R(t)R(t')\rangle = \delta(t-t')$
- Brownian dynamics
 - Overdamped case of Langevin dynamics

•
$$0 = -\nabla U(X) - \zeta \dot{X} + \sqrt{2\zeta k_B T} R(t) \Rightarrow V = -\frac{\nabla U}{\zeta} + \sqrt{2D} R(t)$$

• *D* is diffusion coefficient obtained with Einstein relation $\zeta D = k_B T$

Boundary Conditions

- Period BC
 - Box size should be twice larger than interparticle interaction range
 - Finite size effect: system property with characteristic length comparable to box size cannot be obtained
 - Shape of box might introduce artifacts like crystal formation
- Wall
 - Reflecting
 - Wall potential

Interaction Potentials

Interparticle Potentials

Implicit Solvent Methods

- Explicit solvent simulation can be computation intensive
- Some methods to account for electric interaction with solvent
 - Accessible surface area (ASA)
 - Poisson-Boltzmann
 - Generalized Born (GB)
- Viscous effect can be included by using Langevin or Brownian dynamics
- More complex hydrodynamic interaction requires CFD calculation:
 - Lattice Boltzmann
 - Immersed boundary method

Algorithms

- Integrators
- Short-range interaction algorithms
- Long-range interaction algorithms

Integrators

- Different integration schemes have different performance
- Some performance criteria
 - Time reversibility (Phase space area preserving ability)
 - Long-term energy drift
 - Short-term energy drift
 - Accuracy for large steps
 - Required Memory
 - Computation speed

Common Integration Schemes

- Euler
- Runge-Kutta
- Verlet-Stoermer
- Velocity Verlet
- Beeman's algorithm

Short-range interaction algorithms

- Computing all pair interactions is a $O(N^2)$ task
- Some algorithms exist that aim to speed up the calculation of short range interactions
- Common algorithms include
 - Verlet list
 - Cell list
 - Combined list

Verlet list

- A list of all particles interacting with a particle is recorded and periodically updated for every particle
- Complexity of tasks
 - Creating neighbor list $\sim O(N^2)$
 - Lists are updated every n_u steps
 - The CPU time to calculate energy using Verlet list is $t_v = cn_v N + c_v N^2/n_u$
- After optimization, the overall complexity is $\sim O(N^{1.5})$

 n_v : number of particles in a list n_u : period of list updates N: total number of particles c: coefficient for calculating energy c_u : coefficient for creating list

Cell List

- The box is divided into cells, and only particles in adjacent cells are considered
- Complexity of tasks
 - Creating cell list $\sim O(N)$
 - Calculation with neighboring cells (8 neighbors in 2D, 26 in 3D)
 - The CPU time to calculate energy using cell list is $t_l = cn_lN + c_lN$

 n_l : number of particles in a cell list N: total number of particles c: coefficient for calculating energy c_l : coefficient for creating list

Long-range interaction algorithms

- Potentials that decays with r^{-n} (n < 3) are long range interactions
- A common long range force is the electrostatic interaction
- Some methods to speed up
 - Ewald summation
 - Particle mesh Ewald
 - P3M
 - Shifted force method

Hardware

- MD simulations can be sped up with specialized hardware
- Another option is using parallel programming and utilize GPU acceleration

Any Question?

Programming Exercise #2

- Programming Exercises can be found on the website of this course
- https://softphys.wordpress.com/
- Programming Exercise #2
- https://softphys.wordpress.com/2016/03/11/programming-exercise-2/

In future sessions

- More detailed introduction to reference code
- VMD (visual molecular dynamics)