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Nondimensionalization in MD Simulation

In this document, I would try to elucidate the matter of nondimensionalization utilized in
our MD simulation. Intuitively this should be a very straightforward matter, however, as we
will see, some minor snags stand, and I shall attempt to make the entire issue clear. Hopefully
the completion of this document will make myself and any future reader clear.

1 Equation of Motion

A classical model would be sufficient in the study of our system, so there is essentially only one
equation of motion needed in our system, the second law of Newton.

m~a = −∇U − ζ~v + ~frand (1)

where ζ is the damping factor and frand is the random force. This is the Langevin equation, and
this essentially describes the system in whole.

However, to fully describe the system, we need to specify the force fields and potentials.
The potentials can be generally divided into two categories, the bonding potentials between
adjacent polymer units, and non-bonding potentials.

U = Ubond + Unon−bond (2)

The bonding potentials make up of the vibration potential and the bending potential

Ubond = Uvib + Ubend (3)

Uvib =
kvibkBT

2σ2
M

∑
(|~ri − ~ri+1 − σM)2 (4)

Ubend = kbendkBT
∑(

1− (~ri−1 − ~ri)(~ri − ~ri − 1)

|~ri−1 − ~ri||~ri − ~ri − 1|

)
(5)

and the non-bonding potentials include the excluded-volume (ev) potential, the wall interaction
potential and potential due to external conservative force fields such as electrostatic potential

Unon−bond = Uev + Uwall + Uext (6)

Uev =

i=j=N∑
i=1,j>i+1

4εmkBT

[(
σm
rij

)12

−
(
σm
rij

)6

+
1

4

]
(7)

the excluded volume potential adopted in current study is the pair truncated Lennard-Jones
potential. The wall potential is also a modified version of the LJ potential, however, for brevity
reasons, it is not shown here because the nondimensionalization process is essentially identical
to the excluded volume potential.

Now, we can observe that intrinsically from our construction of the vibration potential and
bending potential, the incorporation of the factor kBT and σM imply the nondimensionalization
with these factors. As we will soon see, this is indeed the case.
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2 Selecting Parameters for Nondimensionalization

Now, we try to find a simple set of parameters to nondimensionalize the set of equation above.
From our construction, it is clear that we should opt for kBT as the characteristic energy scale,
and σM as the characteristic length scale. Now we try this, and the equations become

U∗vib =
kvib
2

∑(
|~r∗i − ~r∗i+1 − 1

)2 (8)

U∗bend = kbend
∑(

1−
(~r∗i−1 − ~r∗i )(~r∗i − ~r∗i − 1)

|~r∗i−1 − ~r∗i ||~r∗i − ~r∗i − 1|

)
(9)

U∗ev =

i=j=N∑
i=1,j>i+1

4εm

(
r∗−12ij − r∗−6ij +

1

4

)
(10)

where

U = U∗kBT (11)
r = r∗σM (12)

We see that the potentials are successfully transformed into nondimensional equations.

Now we tackle the equation of motion. Intuitively, we shall choose a character timescale to
proceed. But for reasons that would be demonstrated in following text, we choose instead the
damping factor ζ as the characteristic dimension to work with. First, we identify with Stokes’
law

Fd = 6πηRv = 6πη
σM
2
v = ζv (13)

so we see that the damping coefficient in terms of dimension is

ζ [=] ησM = [M ][T ]−1[L]−1 ∗ [L] = [M ][T ]−1 (14)

where [=] denotes the equivalence of the physical dimension, and M,T, L, F stands for mass,
time, length and force respectively. We now dismantle the dimensions we selected earlier into
other dimensions.

kBT [=] [E] = [M ][L][T ]−2 ∗ [L] = [M ][L]2[T ]−2 (15)
σM [=] [L] (16)

We could now use these to form other dimensions!

[T ] = ([M ][T ]−1) ∗ ([M ][L]2[T ]−2)−1 ∗ ([L])2 (17)
[M ] = ([M ][T ]−1)2 ∗ ([M ][L]2[T ]−2)−1 ∗ ([L])2 (18)
[F ] = [E][L]−1 (19)

Therefore it follows that time, mass and force should be nondimensionalized with

t = τt∗ =

(
ζσ2

M

kBT

)
t∗ (20)

m = Λm∗ =

(
ζ2σ2

M

kBT

)
m∗ (21)

f = Φf ∗ =

(
kBT

σM

)
f ∗ (22)
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To verify this, let us try to nondimensionalize the equation of motion directly.

m~a = −∇U − ζ~v + ~frand (23)

⇒ m~a

(
σM
kBT

)
= −∇U

(
σM
kBT

)
− ζ~v

(
σM
kBT

)
+ ~frand

(
σM
kBT

)
(24)

⇒ m~a

(
kBT

σ2
Mζ

2

)(
ζσ2

M

kBT

)2(
1

σM

)
= −∇U

(
1

kBT

)
(σM)− ~v

(
ζσ2

M

kBT

)(
1

σM

)
+ ~f ∗rand

⇒ m∗~a∗ = −∇∗U∗ − ~v∗ + ~f ∗rand (25)

where

~a∗ =
∂2~r∗

∂t∗2

~v∗ =
∂~r∗

∂t∗

∇∗ = ê∗i
∂

∂x∗i
(26)

Other important quantities can also be nondimensionalized following the same procedure.

• Dynamic viscosity of solvent: η = (ζ/3πσM)⇒ η∗ = η (ζ/σM)−1 = 1/3π
(this follows from the Stokes’ equation)

• Diffusivity of monomer: Dm = (kBT/3πησM)⇒ D∗m = Dm(kBT/ζ)−1 = 1
(this follows from the Stokes-Einstein equation)

• Diffusion timescale of a momoner: τm = (σ2
M/Dm)⇒ τ ∗m = τm(ζσ2

M/kBT )−1 = 1

• Mass density of a monomer: ρm = (6m/πσ3
M)⇒ ρ∗m = ρm(Λ/σ3

M)−1 = (6m∗/π)

3 Interpreting the Characteristic Quantities

Now we have made our system nondimensional, we need to justify the physical meaning of
the quantities. The quantity kBT is very straightforward to understand. It is a measure of the
energy scale for thermal fluctuation. However, other quantities do not follow so intuitively.

We have implicitly suggested that the quantity σM to be the diameter of monomers. How-
ever, the monomer here does not refer to the monomer molecules that actually constitute the
polymer molecules. Rather, by monomer here we actually mean the hypothetical ”soft” beads
that are connected together to form a bead-spring chain. The model chain consist of the charac-
teristic of a Gaussian chain (quadratic potential between adjacent nodes), long range monomer
interactions (LJ excluded volume effect), and the discrete worm-like chain (potential depends
on bond angle). Hence, the quantity σM cannot be construed as the bond length of constituting
monomers, but rather they are the diameter soft beads.

That being said, we still lack the physical correspondence to measurable physical quantities.
What does σM actually correspond to? To answer this, we must refer to simulations.

It was found that for simulations with kbend = 5, results yield a persistence length lp = 5;
while it was also found that for kbend = 25, lp = 25. Note that the choice of kvib here should
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be irrelevant here, since persistence length is a quantity relating to the torsion and bending of a
polymer chain. However, for finite simulations, it is expected that for softer chains (small kvib)
the fluctuation might be larger. Nonetheless, the average should be identical. The strength of
the excluded volume effect is also expected not to affect the result, since the persistence length
is a property relevant only to relatively short range interaction. The mass of monomers and the
damping factor are also irrelevant, since they contribute to the dynamics only.

Now, lp is a physical quantity directly measurable from experiments. For dsDNA in a buffer
solution, lp is found to be 50 nm. Hence for kbend = 5, this corresponds to σM = 10 nm. From
our model, we can also read that the with of DNA chain is also 10 nm (because the diameter of
the beads correspond to the with of the chain). With the fact that dsDNA is actually 2 nm wide,
we can calculate the Debye length of DNA to be

1

κ
=

10− 2

2
= 4 (nm) (27)

This correspond to the case of moderate to low ionic strength. In comparison, the case of
kb = 25 gives σM = 2 nm (∵ lp = 25σM = 50 nm), and it gives a Debye length on Angstrom
scale. This corresponds to the case of very strong ionic strength. Therefore, we could see
that the selection of the parameter kbend can be tuned to match the lp to 1/κ ratio, which is a
experimental factor determined by the composition of the solution. It can be shown that for the
range between 5 < kbend < 25, the correlation between σM and kbend is almost linear.

Next we try to determine the value of the remaining parameter. While we have used the
damping coefficient ζ as the basic nondimensionalization parameter, the actual physical quan-
tity which we can correlate to is the dynamic viscosity η of the solvent. For pure water,
η = 0.89×10−3 Pa·s, and since ζ = 3πησM , we have ζ = 3π·0.89×10−3·10−8 = 8.388×10−11

kg/s (for σM = 10 nm).

Now, we can evaluate every parameter in SI units. For the two different kbend, at T = 25◦C,
we have

kbend 5 10 25
σM (m) 1× 10−8 5× 10−9 2× 10−9

kBT (J) 4.11× 10−21 4.11× 10−21 4.11× 10−21

ζ (kg/s) 8.39× 10−11 4.71× 10−11 1.68× 10−11

η (Pa·s) 8.9× 10−4 8.9× 10−4 8.9× 10−4

τ (s) 2.04× 10−6 2.87× 10−7 1.63× 10−8

τm (s) 2.04× 10−6 2.87× 10−7 1.63× 10−8

Φ (N) 4.11× 10−13 8.22× 10−13 2.06× 10−12

Λ (kg) 1.71× 10−16 1.35× 10−17 2.74× 10−19

Dm (m2/s) 4.90× 10−11 8.72× 10−11 2.45× 10−10

ρm/m
∗ (kg/m3) 3.27× 108 2.06× 108 6.54× 107

In the simulation, iteration timestep is set to dt = 0.0005, while σM = 5 nm, η = 1 cP and
T = 25◦C. This corresponds to dt = 143 ps.

4 Choosing Monomer Mass

While we have successfully transformed our simulation into a nondimensional form, with the
correlation between actual system clearly demonstrated, there remained one crucial parameter
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value to be specified, m∗, the nondimensional mass of a monomer. Physically, this quantity
should be estimated with σM by counting the number of atoms inside the effective volume of
a model bead. Another way of estimating is through the estimation of mass density. From the
table, we found that the monomer mass density is around 108 ·m∗ kg/m3. Physically, we expect
the monomers to be of similar density as the solvent, i.e. water, m∗ ∼ 10−5.

At this point, it seems that we could conclude our discussion. However, one obstacle exists.
In our simulation, we rely on numerical method to solve the differential equations. A problem
with numerical solution of DE is that it might fail due to instability. Let us work with the
simplest method, the forward Euler (FE) method. In our system, the dynamic is essentially
overdamped. Hence, in short time scales, we may divide the velocity into two parts, the time-
independent drift velocity and the time-varying relaxation velocity (we directly employ the
nondimensional version)

v∗(t) = v∗drift + v∗relax(t) (28)

The equation of motion suitable here is the Langevin equation

m∗
dv∗(t)

dt∗
= f ∗ + ζ(t)− v∗(t) (29)

Ignoring the random fluctuation (or equivalently, taking the ensemble average), we have

m∗
d

dt∗
(
v∗drift + v∗relax(t)

)
= f ∗ − v∗drift − v∗relax(t) (30)

At large time, vrelax decays and the drift velocity follows the relation

v∗drift = f ∗ (31)

and the relaxing velocity follow the DE

m∗
dv∗relax(t)

dt∗
= −v∗relax(t) (32)

For ODE in the form y′ = ky, the stability criterion is

|hk + 1| ≤ 1 (33)

Theorem 1. The stability criterion for forward Euler method for ODE y′ = ky is |hk+ 1| ≤ 1,
where h is the integration step size.

Proof. Since yn+1 = yn + hy′ = yn + hkyn = (1 + hk)yn = Gyn, yN+1 = GNy1. For yN+1 to
converge, |G| ≤ 1, hence |hk + 1| ≤ 1.

In our case, we have criterion |1 − dt∗/m∗, which translates as 0 ≤ dt∗/m∗ ≤ 2. The first
inequality is trivial, and the latter gives

dt∗ ≤ 2m∗ (34)

As a consequence, we found that in order for the numeric integration to be stable, our step size
is limited by the value of m∗. Now, if we select m∗ ∼ 10−5, the computation effort required to
for time scales of our interest would be enormous. This is practically infeasible.
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To avoid this, we choose m∗ = 1. Now the conflict emerges, how do we justify this un-
physical selection of monomer mass? The key lies again at the time scale that we are interested
in. For a DNA translocation process, typical translocation time lies at 75-400 µs, which is 250-
1300 in simulation time. Therefore the time scale for the dynamics of our interest is about 3-10,
which is large compared to the relaxation time scale. To verify this, we observe that for relax-
ation time scale m∗1 ∼ 10−5 and m∗2 ∼ 1, exp(−3/10−5) = 0, whereas exp(−3) ∼ 0.05, the
results were comparable, justifying our arbitrary selection of m∗. In short, the justification for
choosing m∗ = 1 is that the time scale of our interest is also very large compared to 1, therefore
in the overdamped limit, we may readjust the relaxation without affecting the dynamics that we
are interested in.
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