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e 12.8: Comparison of various methods for approximating the long-

‘interaction for two charges of the slab geometry shown in Figure 12.6.

jure 12.8 we compare the various approximations with the true two-
1sional solution. The bare Coulomb potential and the shifted and trun-
Coulomb potential both give a zero force in the limit z — <o and
‘ore do not lead to the correct limiting behavior. Although the three-
1sional Ewald summation gives a better approximation of the correct
on, it still has the incorrect limiting behavior for both a small and a large
1 slab of vacuum. The corrected three-dimensional Ewald summation,

ver, does reproduce the correct solution, for both a slab of vacuum of
nd that of 5L,. '
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Chapter 13

Biased Monte Carlo Schemes

Up to this point, we have not addressed a fairly obvious question: what
is the point of using the Monte Carlo technique in simulations? After all,
Molecular Dynamics simulations can be used to study the static properties
of many-body systems and, in addition, MD provides information about
their dynamical behavior. Moreover, a standard MD simulation is computa-
tionally no more expensive than the corresponding MC simulation. Hence,
it would seem tempting to conclude that the MC method is an elegant but
outdated scheme:

As the reader may have guessed, we believe that there are good reasons
to use MC rather than MD in certain cases. But we stress the phrase in cer-
tain cases. All other things being equal, MD is clearly the method of choice.
Hence, if we use the Monte Carlo fechnique, we should always be prepared
to justify our choice. Of course, the reasons may differ from case to case.
Sometimes it is simply a matter of ease of programming: in MC simulations
there is no need to compute forces. This is irrelevant if we work with pair
potentials, but for many-body potentials, the evaluation of the forces may be
nontrivial. Another possible reason is that we are dealing with a system that
has no natural dynamics. For instance, this is the case in models with dis-
crete degrees of freedom (e.g., Ising spins). And, indeed, for simulations of
lattice models, MC is almost always the technique of choice. But even in off-
lattice models with continuous degrees of freedom, it is sometimes better, or
even essential, to use Monte Carlo sampling. Usually, the reason to choose
the MC technique is that it allows us to perform unphysical trial moves, that
is, moves that cannot occur in nature (and, therefore, have no counterpart in
Molecular Dynamics) but are essential for the equilibration of the system.

This introduction is meant to place our discussion of Monte Carlo tech-
niques for simulating complex fluids in a proper perspective: in most pub-
lished simulations of complex (often macromolecular) fluids, Molecular Dy-



1amics is used, and rightly so. The Monte Carlo techniques that we discuss
1ere have been developed for situations where either MD cannot be used at
1ll or the natural dynamics of the system are too slow to allow the system to
:quilibrate on the time scale of a simulation.

Examples of such simulations are Gibbs ensemble and grand-canonical
Monte Carlo simulations. Both techniques require the exchange of particles,
sither between a reservoir and the simulation box or between the two boxes.
3uch particle exchanges are not related to any real dynamics and therefore
-equire the use of Monte Carlo techniques. But, in the case of complex fluids,
n particular fluids consisting of chain molecules, the conventional Monte
Zarlo techniques for grand-canonical or Gibbs ensemble simulations fail.
The reason is that, in the case of large molecules, the probability of accep-
:ance of a random trial insertion in the simulation box is extremely small
and hence the number of insertion attempts has to be made prohibitively
large. For this reason, the conventional grand-canonical and Gibbs ensem-
ole simulations were limited to the study of adsorption and liquid-vapor
phase equilibria of small molecules.

/
13.1 Biased Sampling Techniques

[n this chapter,! we discuss extensions of the standard Monte Carlo algo-
rithm that allow us to overcome some of these limitations. The main fea-
ture of these more sophisticated Monte Carlo trial moves is that they are
no longer completely random: the moves are biased in such a way that the
molecule to be inserted has an enhanced probability to “fit” into the existing

configuration. In contrast, no information about the present configuration of -

the system is used in the generation of normal (unbiased) MC trial moves:
that information is used only to accept or reject the move (see Chapters 3
and 5). Biasing a Monte Carlo trial move means that we are no longer work-
ing with a symmetric a priori transition matrix. To satisfy detailed balance,
we therefore also should change the acceptance rules. This point is discussed
in some detail. Clearly, the price we pay for using configurationally biased
MC trial moves is a greater complexity of our program. However, the re-
ward is that, with the help of these techniques, we can sometimes speed up
a calculation by many orders of magnitude. To illustrate this, we shall dis-
cuss examples of simulations that were made possible only through the use
of bias sampling.

1Readers who are not familiar with the Rosenbluth scheme are advised to read section 11.2
first.

13.1.1 Beyond Metropolis

The general idea of biased sampling is best explained by considering a sim-
ple example. Let us assume that we have developed a Monte (;a..rlo scheme
that allows us to generate trial configurations with a probability that de-
pends on the potential energy of that configuration:

a(o — n) = fUMn).
For the reverse move, we have
a(n — o) = fid (o).

Suppose we want to sample the NV, T ensemble, which implies that we have
to generate configurations with a Boltzmann distribution (5.2.2). Imposing

detailed balance (see section 5.1) yields, as a condition for the acceptance

le,
e acc{fo = n) flLf(o}]

acc(n — o} fid(n)]
A possible acceptance rule that obeys this condition is

acc(o — m) = min (1 , ﬂ/{_(o_)] exp{—BU(n) - U[o)]}) . {13.1.1)

exp{—BU{n) — (o)}

flut(nll

This derivation shows that we can introduce an arbitrary biasin_g function
(i) in the sampling scheme and generate a Boltzma.n.n d%strlbuhon of con-
figurations, proyided that the acceptance rule is modified in fsuc.h a way that
the bias is removed from the sampling scheme. Ideally, by biasing the prob-
ability to generate a trial conformation in the right way, we could ma.ke the
term on the right-hand side of equation (13.1.1) always equal fo unity. In
that case, every trial move will be accepted. In Chapter 14.3, we haxie seen
that it is sometimes possible to achieve this ideal situatior}. However, in gen-
eral, biased generation of trial moves is simply a technique for enhancing
the acceptance of such moves without violating detailed ba}ance. .

We now give some examples of the use of non-Metropolis sarr}leg tech-
niques to demonstrate how they can be used to enhance the efficiency of a
simulation.

13.1.2 Orientational Bias

To perform a Monte Carlo simulation of molecules with an i.ntern}olecular
potential that depends strongly on the relative molecular 01;'1entat1on (e.g-
polar molecules, hydrogen-bond formers, liquid-crystal formmg.molecules),
it is important to find a position that not only does not overlap .Wl‘th thl-:: otl_ler
molecule but also has an acceptable orientation. If the probability Qf finding
a suitable orientation by chance is very low, we can use biased trial moves
to enhance the acceptance.



Algorithm

_et us consider a Monte Carlo trial move in which a randomly selected par-
icle has to be moved and reoriented. We denote the old configuration by
» and the trial configuration by n. We use standard random displacement

or the translational parts of the move, but we bias the generation of (rial
yrientations, as follows:

1. Move the center of mass of the molecule over a {small) random dis-
tance and determine all those interactions that do not depend on the
orientations. These interactions are denoted by uP®*{n}. In practice,
there may be several ways to separate the potential into orientation-
dependent and orientation-independent parts.

2. Generate k trial orientations {bq, bz, -- - , by} and for each of these trial
orientations, calculate the energy 1 (b;).

3. We define the Rosenbluth? factor
K
Win) = Z exp[—Bu™{b;)]. (13.1.2)
=1

Out of these k orientations, we select one, say, n, with a probability
expl—pu(bn)}”
35 expl-pur(bs)]

4. For the old configuration, o, the part of the energy that does not de-
pend on the orientation of the molecules is denoted by uP*{0). The
orientation of the molecule in the old position is denoted by b, and
we generate k— 1 trial orientations denoted by bz, - - - , bx. Using these
k orientations, we determine g

p(bn) =

(13.1.3)

_ . _
W (o) = exp[—Bu™(bo)i -+ ) _ expl-—Bu(b;)i. (13.1.4)
j=2

5. The move is accepted with a probability

Wi{n)
W(o)

acc{o = n) =min (1, exp{—BuP*(n) — up"S(o)]}) . {13.1.5)

tis clear that equation (13.1.3) ensures that energetically favorable configu-
ations are more likely to be generated. An example implementation of this
icheme is shown in Algorithm 22. Next, we should demonstrate that the
;ampling scheme is correct.

2Since this algorithm for biasing the orientation of the molecules is very similar to an algo-
ithm developed by Rosenbluth and Rosenbluth in 1955 [295] for sampling configurations of
rolymers (see section 11.2), we refer to the factor W as the Rosenbluth factor.

Algorithm 22 (Orientational Bias)

PROGRAM orien bias

o=int (ranf () *npart}+1

xt=ranf {} *box

¢all ener (xt,en)

wn=exp { -beta*en)

sumw=0

do j=1.,k
call ranor{b(j))
call ererc{xt,b(j),eno)
w(j)= exp(-beta*eno)
sumw=sumw+w ()

enddo

call gelect {w,sum,n)

bn=b (n}

Wn=WI* SUlw

call ener(x(o).,en)
wo=exp (-beta¥en)

sumw=0
do j=1,k
if (j.eg.l) then
b (3)=tTo)
else
call rancrib{j))
endif

call enero{x(o),b(]j),eno)

sumw=sumw+exp { -beta*eno)
enddo

WO=WO* SUMwW

if {ranf().lt.wn/wo)
+ call accept

end

move a particle t¢ a random
position using an orient. bias
select a particle at random

start: generate new configuration
calculate uP®™

generate k trial orientations
random vactor on a sphere
calculate trial orientation j u®(j)
calculate Rosenbluth factor (13.1.2)

select one of the orientations

1 is the selected conformation
Rosenbluth factor new configuration
consider the old conformation
calculate uP*

consider k trial orientations
use actual orientation of particle o

generate a random orientation

calculate energy of trial crientation j
calculate Rosenbluth factor (13.1.4)

Rosenbluth factor old configuration
acceptance test (13.1.5)
accepted: do bookkeeping

Comments to this algorithm:

1. The subroutine ener calculates the energy associated with the position, the
subroutine enero the energy associated with the orientations.

2. The subroutine ranor generates a random vector on a unit sphgre (Algo-
rithm 42), subroutine accept does the bookkeeping associated with the ac-

ceptance of a new configuration, and the subroutine s

the orientations with probability p(i) = w(i}/ 2 wii) (see, Algorithm 41).

elect selects one of



F.igu.re 13.1: Lattice model in which the molecules can take four orientations
(indicated by arrows, k = 4). The dotted cifcle indicates the trial position of
the particle that we attempt to move.

Justification of Algorithm

To show that the orientational-bias Monte Carlo scheme just described is cor-
rect, that is, generates configurations according to the desired distribution, it
is convenient to consider lattice models and continuum models separately.
For both cases we assume that we work in the canonical ensemble, for which
the distribution of configurations is given by equation (5.2.2)

N(q™) oc expl—BU (g™,

where 1/(q") is the sum of orientational and nonorientational part of the
energy: )

u — u{)r + upOS'

We first consider a lattice model.

Lattice Models

We. assume that the molecules in our lattice model can have k discrete orien-
tations (see Figure 13.1). We impose the condition of detailed balance {5.1.1):

Klo -y n) =K(n —= o).
The flow of configurations o to n is (equation (5.1.2))

Ko = n) = MNM(o) x (o = n) x acc(o — nl]‘; (13.1.6)

In the orientaticnal-bias scheme, the probability of selecting conformation n
is (see equation (13.1.3))

exp[—pu®(n]] _

oo =9 n) = Wi

Imposing detailed balance and substitution of the desired distribution for
N(n) and N (o) imposes the following condition on the acceptance rules:

acclo = n)  expl[—BU(n) N exp[—Bu*(o)] % Win)
accn 10) | expl—pU(o)] W(o) expl-puor(n]]
.= V\;({Z)] exp{—BuP>(n) — uf*(o)l}. (13.1.7)

Acceptance rule (13.1.5) satisfies this condition. This demonstrates that for a
lattice model detailed balance is fulfilled.

Continuum Model

If the orientation of a molecule is described by a continuous variable, then

there is an essential difference with the previous case. In the lattice model all
the possible orientations can be considered explicitly, and the correspond-
ing Rosenbluth factor can be calculated exactly. For the continuum case, we
can never hope to sample alf possible orientations. It is impossible to de-
termine the ex#tt Rosenbluth factor since an infinite number of orientations
are possible.3 Hence, the scheme for lattice models, in which the Rosen-
bluth factor for all orientations is calculated, cannot be used for a continuum
model. A possible solution would be to use a large but finite number of trial
directions. Surprisingly, this is not necessary. It is possible to devise a rig-
orous algorithm using an arbitrary subset of all possible trial directions. The
answer we get does not depend on the number of trial directions we choose
but the statistical accuracy does.

Let us consider the case in which we use a set of k trial orientations; this
set is denoted by

{bh =1{b1,b2,--- ,by}.

Conformation bn can be selected only if it belongs to the set {b}y. The set of
all sets {b} that includes conformation n is denoted by

By = {{bk/bn € {bjx}.

Every element of B, can be written as (by, b*), where b* is the set of k — 1
additional trial orientations. In the flow of configuration o to n, we have to

3In Example 17 we discuss a special case for which the Rosenbluth factor cen be calculated
exactly,



Figure 13.2: Continuum model in which the molecule can have an arbitrary
orientation (indicated by arrows). The figure shows two different sets of four
trial orientations that both include orientation by,.

consider the sum over all sets in B,

K(o — n) =N(o) Z alo — n,1i) x acc{o — n, i), (13.1.8)
ichn

in which the probability of generating configuration n and the acceptance
depend on the particular set of trial orientations 1.
Similarly, for the reverse move, we define the set B,

Bo = {{b}klbo € {bx},

for which each element can be written as (bo, b’™). The expression for the
reverse flow then becomes

K(n - o) =N[n) Z a(n = o0,3) x ace(n — o0,7). (13.1.9)
i€B,

It should be stressed that infinitely many different sets of orientations in-
clude by, and the same holds for sets that include b,. Moreover, the prob-
ability of selecting b, from such a set depends on the remainder of the set
b* (see Figure 13.2). Hence, the acceptance probability must also depend on
the sets b* and b'". .

Detailed balance is certainly obeyed if we impose a much stronger condi-
tion, “super-detailed balance,” which states that for every particular choice
of the sets b* and b’*, detailed balance should be obeyed,

K(o = n,b*,b"") = K(n-o0,b",b*),
N(o) alo = n,b*, b acc{o = n, b*,b"™)
— AN(n) a(n— 0,b"",b*) ace(n — 0,b"", b*),
(13.1.10)

in which b* and b'* are two sets of k — 1 arbitrary additional trial orienta-
tions. It may seem strange that the sets b* and b'" show up on both sides of

the equations. However, bear in mind that, to decide on the acceptance of the
forward move, one should generate both the set b* that includes the new ori-
entation and the set b'* around the old orientation. Hence, the construction
of a trial move includes both sets of trial orientations. As the probabilities
of generating b* and b'" appear on both sides of the equations, they cancel
each other. Moreover, the a priori probability of generating a random orienta-
tion b, in the forward move is equal to the a priori probability of generating
b, in the reverse move. So these generation probabilities also cancel each
other. This leads to a great simplification of the acceptance criterion. For the
canonical ensemble, substitution of equations (13.1.2) and (13.1.3) yields

acclo = m,b%, b} expl—pU(n)] expl—Pu{o)] W(bn,b")
accn — 0,05 b*)  exp[—PU(o)] W(bo,b™) expl—pu(n]]
bTL! * 08 05
_ Hexp{—ﬁ[ﬂp (n) — v (o)),
(13.1.11)

As acceptance rule (13.1.5) satisfies this condition, detailed balance is indeed
obeyed.

Note that, in this demonstration, we did not have to assume that the
number of trial orientations k had to be large. In fact, the result is independent
of the number of trial orientations.

Example 16 (Orientational Bias of Water)
Cracknell et al. [353] used an orientational-bias scheme to simulate fiquid
water. At ambient temperature, water has a relatively open structure, in
which the water molecules form a network due to the hydrogen bonds. To in-
sert a water molecule successfully, one has not only to place the molecule in
an empty spot bui also find a good orientation. The method used by Crack-
nell ef al. to find this optimum orientation is similar to the one introduced in
this section, in the sense that a bias in the orientation is introduced and is
subsequently removed by adjusting the acceptance rules. Yet, the philoso-
phy behind the approach of Cracknell et al. is fundamentally different.

In the scheme of Cracknell et al., a random position of a water molecule
r is generated and one trial orientation w is drawn from a distribution f{r, w).
The problem is that the optimum distribution f(r, w) is not known a priori and
depends on the conformations of the other water molecules. However, as
we have shown, any distribution can be used (as long as detailed balance
and microscopic reversibility are obeyed). Since the construction of the true
orientational distribution requires too much computer time, Cracknell et al.
constructed a distribution that was meant to mimic the true distribution. To
this end, one axis of the water molecule was given a random orientation and,
for the other axis a biasing scheme was used. For this axis, n equidistant
angles 1, were generated

¥y =2mp/n, pe{l,--,nk



For each of these, the Boltzmann factor of the energy was calculated

fi = Cexp(—Buty, ).

Assuming that the Boitzmann welght varies Imearly between test points,
these n points span an approx1mate/or:entatlonal distribution (). For in-
stance, for P € 2rp/n, 2n(p + 1)/, the distribution f is given by

flp) = {2rlp + 1)/m — $)fp + (b — 2rp/n )y}

2 /
The constant C was fixed by the requirement that the orientational distribu-
tion be normalized. Using a standard rejection scheme, a trial orientation
is generated according to the distribution specified by f{1). For liquid water
under ambient conditions, this method gives an improvement of a factor 2-3
over the conventional random insertion.

The main difference between the scheme of Cracknell ef al. and the al-
gorithm just discussed is that in Cracknell et al’s scheme an attempt is made
to construct a continuous distribution that approaches the true distribution in
the limit of large n. In conirast, for the scheme of section 13.1.2, the shape
of the true distribution does not maiter. In particular, it is not necessary to
reconstruct the distribution or to calculaie a normalization factor.

Example 17 (Dipoles Embedded in Spherical Atoms)

In systems with dipoles, the energy depends on the mutual orientation of
the molecules and a bias in the sampling of the orientation can be useful.
For models of dipoles embedded in an otherwise spherical particle (e.g., the
dipolar hard-sphere fluid) the scheme of section 13.1.2 can be implemented
elegantly as pointed out by Cailiol [225]. In equations {13.1.2) and (13.1.4),
the Rosenbluth factor is calculated by sampling k trial orientations. For a
dipolar hard sphere (or any point dipole), we can calculate the Rosenbluth
factors exactly once the electric field (E) at the position of the inserted parti-
cle and that at the position of the old configuration are known:

Wi = [dbexpi—pu-Elr)]

inh B |u| [E{r}[]
Blul[E{r)|

where u is the dipole moment of the molecule.* A trial orientation can now

#In fact, there is a subtlety with this expression. It assumes that the component of the local
electric field in the direction of the dipole does not depend on the absolute orfentation of the
dipole. This seems obvious. But, in the case of an Ewald summation, where the long-range
interaction of a melecule with its periodic images is represented by a Fourier sum, this condition
is not quite satisfied.

he drawn directly from the distribution

expl—fu - E(r)]

p(r,w) = Wi

13.2 Chain Molecules

The sampling of equilibrium conformations of polymers is usually time con-
suming. The main reason is that the natural dynamics of polymers are
dominated by topological constraints (for example, chains cannot cross) and
hence any algorithm based on the real motion of macromolecules will suffer
from the same problem. For this reason, many “unphysical” Monte Carlo
trial moves have been proposed to speed up the sampling of polymer con-
formations (see, e.g., [299]). In this section we introduce the configurational-
bias Monte Carlo scheme [293,297, 354, 355]. This simulation technique can
be used for systems where it is not possible to change the conformation of a
macromolecule by successive small steps.

13.2.1 Configurational-Bias Monte Carlo

The starting point for the configurational-bias Monte Carlo technique is the
scheme introdiiced by Rosenbluth and Rosenbluth in 1955 [295]. The Rosen-
bluth scheme itself also was designed as a method to sample polymer con-
formations.> A drawback of the Rosenbluth scheme is, however, that it gen-
erates an unrepresentative sample of all polymer conformations; that is, the
probability of generating a particular conformation using this scheme is not
proportional to its Boltzmann weight. Rosenbluth and Rosenbluth corrected
for this bias in the sampling of polymer conformations by introducing a
conformation-dependent weight factor W. However, as was shown in detail
by Batoulis and Kremer [300], this correction procedure, although correct in
principle, in practice works only for relatively short chains (see Example 13).

The solution of this problem is to bias the Rosenbluth sampling in such
a way that the correct (Boltzmann) distribution of chain conformations is
recovered in a Monte Carlo sequence. In the configurational-bias scheme
to be discussed next, the Rosenbluth weight is used to bias the acceptance
of trial conformations generated by the Rosenbluth procedure. As we shall
show, this guarantees that all chain conformations are generated with the
correct Boltzmann weight.

5The Rosenbluth scheme is discussed in some detail in the context of a free energy calculation
of a chain molecule in Chapter 11.
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Figure 13.3: Sketch of the configurational-bias Monte Carlo scheme. The
left figure shows the generation of a new configuration and the right figure
shows the retracing of the old conformation. The arrows indicate the three
trial positions. '

13.2.2 Lattice Models
Algorithm

The configurational-bias Monte Carlo algorithm consists of the following
steps:

1. Generate a trial conformation using the Rosenbluth scheme (see Fig-
ure 13.3, left) to grow the entire molecule, or part thereof, and compute
its Rosenbluth weight W (n).

2. “Retrace” the old conformation (see Figure 13.3, right) and determine
its Rosenbluth factor.

3. Accept the trial move with a probability

acc{o — n} = min(1, W(n)/W(o)l. {13.2.1)

The generation of a trial conformation n of a polymer consisting of £ mono-
mers is generated using an algorithm based on the method of Rosenbluth
and Rosenbluth (see Figure 13.3): .

1. The first atom is inserted at random, and its energy is denoted by
wi(n), and® wi(n) = kexpl—-Bui(n)}, where k is the coordination
number of the lattice, for example, k =6 for a simple cubic lattice.

2. For the next segment, with index i, there are k possible trial directions.
The energy of trial direction j is denoted by ui(j). From the k possible

6The factor k in the definition of the Rosenbluth weight of the first segment, strictly speaking,
js unnecessary. We introduce it only here to make the subsequent notation more compact.

e

directions, we select one, say, n, with a probability

() PP

o CYR (13.2.2)

where w; (n} is defined as
k
wi(n) = Z exp[—puii)l. (13.2.3)
j=1

The inte{acﬁon energy u;(j) includes all interactions of segment i with
other molecules in the system and with segments 1 through i — 1 of
the same molecule. It does not include the interactions with segments
i1+ 1 to {. Hence, the total energy of the chain is given by U(n) =

Yo w(n).

3. Step 2 is repeated until the entire chain is grown and we can determine
the Rosenbluth factor of configuration n:

[4
w(n)=][win. (13.2.4)
i=1

Similarly, to dgtermine the Rosenbluth factor of the old configuration, o, we
use the following steps (see Figure 13.3).

1. One of the chains is selected at random. This chain is denoted by o.

2. We measure the energy of the first monomer u, (o) and compute wy (o)
= kexp[—pu1(o]].

3. To compute the Rosenbluth weight for the remainder of the chain, we
determine the energy of monomer i at its actual position, and also the
energy it would have had had it been placed in any of the other k — 1
sites neighboring the actual position of monomer i—1 (see Figure 13.3).
These energies are used to calculate

k
wi (o) = expl—pui(o)] + Y_exp[-Bui(j]l.
=2

4. Once the entire chain has been retraced, we determine its Rosenbluth
factor:

4
W(o) =] wilo). (13.2.5)
i=1



Algorithm 23 (Basic Configurational-Bias Monte Carlo)

PROGRAM CRMC configurational-bias Monte Carlo
~

new_conf=.false. first retrace (part of) the old conf,

call grow(new.conf,wo) to calculate its Rosenbluth factor

new.conf=.true. next consider the new configuration
call grow(new.conf,wn) grow {part of) a chain and calculate

the Rosenbluth factor of the new conf.
if (ranf{).lt.wn/wo) acceptance test (13.2.6)

+ call accept accept and do bookkeeping
end

Comments to this algorithm:

1. This algorithm shows the basic structure of the configurational-bias Monte
Carlo method. The details of the model are considered in the subroutine grow
{see Algorithm 24 for a polymer on a lattice).

2. The subroutine accept takes care of the bookkeeping of the new configura-
tion.

Finally the trial move from o to n is accepted with a probability given by
acc(o — n) = min[1, W(n)/W(o)]. {13.2.6)

A schematic example of the implementation of this scheme is given in Al-
gorithms 23 and 24. We now have to demonstrate that the acceptance rule
(13.2.6) correctly removes the bias of generating new segments in the chain
introduced by using equation (13.2.2).

Justification of the Algorithm

The demonstration that this algorithm samples a Boltzmann distribution is
similar to the one for the orientational-bias algorithm for lattice models (sec-
tion 13.1.2).

The probability of generating a particular conformation n follows from
the repetitive use of equation (13.2.2):

a(o —n) = ﬁ expl=pui(n) _ eXP[*ﬁU(ﬂ)]. :

win) Win) (13:27)

i=1

vV vy
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Algorithm 24 (Growing a Chain on a Lattice)

SUBROUTINE grow (new_conf, w) grow an ¢ bead polymer on a lattice
with coordination number k and
calculate its Rosenbluth factor w
if (new_conf) then
xn{l)=ranf () *box
else
o=ranf () *npart+1
xn{l)=x(o,1)

insert the first monomer

select old chain at random

endif ,
call ener{xn(l),en) calculate energy -
w=k*exp{-beta*en) Rosenbluth factor first monomer
do i=2,ell

sumw=0 . .

do j=1,k consider the k trial directions

determine trial position
determine energy trial position j

xt{j)=xn(i-1)+b(j)
call ener(xt{j),en)
w{j)=exp(-beta*en)
sumw=sumw+w (] )
enddo
if (new_.conf} then
call select(w,sumw,n) select one of the frial position
xn{i) =xt (n) direction n is selected
else
xn{i)=x{o,1)
endif
w=w*sumw update Rosenbluth factor
enddo
return
end

Comments to this algorithm:

1. If new_conf=.true. generate a new configuration, if new_conf =
.false. retrace an old one.

2. In a latlice model we consider all possible trial positions, denoted E{y b (j.) ,
therefore, for the old configuration, the actual position is automatically in-
cluded.

3. The subroutine select (Algorithm 41) selects one of the trial positions with
probabilify p(i) = w(i)/ ZJ- w(j). The subroutine ener calculates the en-
ergy of the monomer at the given position with the other polymers and the
monomers of the chain that already have been grown.



Similarly, for the reverse move,

expl—pL{(o)]

an—o) = Wio)

(13.2.8)

The requirement of detailed balance (5.1.1) imposes the following condition
on the acceptance criterion: '

acclo — 1) Win)
accin = o) Wi{o)" (13.2.9)

Clearly, the proposed acceptance criterion (13.2.6) satisfies this condition.

It should be siressed that the value of factor W( o) depends on the direc-
tion in which the old configuration is retraced: if we start from monomer 1,
we find a different numerical value for W(o) than if we start from monomer
£. As a consequence the probability of such a move depends on the way the
factor W (o) has been calculated. Although such a dependence is at first sight
counterintuitive, both ways of retracing the old conformation—starting with
monomer 1 or with monomer é—result in the correct distribution of states, as
long as both ways occur with equal probability during the simulation. This
is automatically satisfied in the case of linear chains of identical segments
where the labeling of the terminal groups is completely arbitrary.

13.2.3 Off-lattice Case

Next we consider configurational-bias Monte Carlo for off-lattice systems,
As with the orientational moves described in section 13.1.2, some aspects
in a continuum version of configurational-bias Monte Carlo require special
attention. In section 13.1.2 we already showed that it may be possible to de-
velop a configurational-bias sampling scheme even when it is impossible to
calculate the Rosenbluth factor exactly. For chain molecules, we can follow
basically the same approach.

The other important point that we have to consider is the way in which
trial conformations of a chain molecule are generated. In a lattice model,
the number of trial conformations is dictated by the lattice. In an off-lattice
system, one could generate trial segments with orientations distributed uni-
formly on a unit sphere. However, for many models of interest this pro-
cedure is not very efficient, in particular when there are strong intramolec-
ular interactions (e.g., bending and torsion potentials). The efficiency of a
configurational-bias Monte Carlo algorithm depends to a large extent on the
method used of generating the trial orientations. For example, an isotropic
distribution of trial directions is well suited for completely flexible chains.
In contrast, for a stiff chain (e.g., liquid-crystal forming polymer), such a
trial position will almost always be rejected because of the intramolecular
interactions. )

Algorithm

From the preceding discussion, it follows that the intramole.cular interac-
tions should be taken into account in generating the set of trial conforma-
tions. Here, we consider the case of a flexible molecule with contribl‘ltions to
the internal energy due to bond bending and torsion. The fully flexible case
then follows trivially. Consider a chain of £ linear segments, the potential
energy of a given conformation I/ has two contributions:

1. The bonded potential energy U™ is equal to the sum of the contribu-
tions of the individual joints. A joint between segments i and i + 1
(say) has a potential energy u?™ that depends on the angle 8 between
the successive segments. For instance, ut"(9) could be of the form
ubond(8)=kg (8 — 85)2. For realistic models for polyatomic molecules,
ubd includes all local bonded potential energy changes due to the
b(lending and torsion of the bond from atom i — 1 to atom i.

2. The external potential energy U™* accounts for all interactions with other
molecules and for all the nonbonded intramolecular interactions. In
addition, interactions with any external field that may be present are
also inciuded in 2%,

In what follows we shall denote a chain in the absence of the external inter-
actions as the ideal chain. Note that this is a purely fictitious concept, as real
chains always have nonbonded intramolecular interactions.

To perfoﬁﬁ a configurational-bias Monte Carlo move, we apply the fol-
lowing “recipe” to construct a conformation of a chain of £ segments. The
construction of chain conformations proceeds segment by segment. Let us
consider the addition of one such segment. To be specific, let us assume
that we have already grown i — 1 segments and are trying to ad.d segment
i. This is done in two steps. First we generate a trial conformation n, next
we consider the old conformation o. A trial conformation is generated as

follows:

1. Generate a fixed number (say k) trial segments. The orientations of the
trial segments are distributed according to the Boltzmann weight asso-
ciated with the bonded interactions of monomer i (uP°"d). We denote
this set of k different trial segments by

{b}x ={by,-+ by},

where the probability of generating a trial segment b is given by

bond fy)qpy — SXPIEBUDNAD (o bond )1,
P> (b)db = —Aybond(p exp t
[ db expl—pur(b) (13.2.10)



2. For all k trial segments, we compute the external Boltzmann factors
exp[—Bu(b; )], and out of these, we select one, denoted by n, with a

probability
ext _ exP[‘ﬁu{eXt(bn]]
P (bn) = _W, (13-2-11)
where we have defined
k
wi(n) = Z expl-Buf*(b;)]. (13.2.12)

=1

3. The selected segment n becomes the ith segment of the trial conforma-
tion of the chain.

4. When the entire chain is grown, we calculate the Rosenbluth factor of

the chain; .
Wm) = TTwetmy, (13.2.13)
i=1
- where Rosenbluth factor of the first monomer is defined by
wi(n) = kexp[—pus(r )], (13.2.14)

where r7 is the position of the first monomer.

For the old configuration, a similar procedure to calculate its Rosenbluth
factor is used.

1. One of the chains is selected at random. This chain is denoted o.

2. The external energy of the first monomer is calculated. This energy

involves only the external interactions. The Rosenbluth weight of this
first monomer is given by

Wi (o) = kexp[—Bus (o). (13.2.15)
3. The Rosenbluth factors of the other {—1 segments are calculated as fol-
lows. We consider the calculation of the Rosenbluth factor of segment
i. We generate a set of k — 1 orientations with a distribution prescribed
by the bonded interactions ( 13.2.10). These orientations, together with
the actual bond between segment i1 and 1, form the set of k orien-

tations (by, b"™*). These orientations are used to calculate the external
Rosenbluth factor:

k
W) =) expl—puf*(b;)].

j=t

(13.2.16)

4. For the entire chain the Rosenbluth factor of the old conformation is
defined by

4

Wext(o) — HW%Xt(O}.

i=1

(13.2.17)

After the new configuration has been generated and the Rosenbluth factor
of the old configuration has been calculated, the move is accepted with a
probability

acc(o —n) = Irnjn[l,We"t[n)/WE"t[o)]. (13.2.18)

We still have to show that this sampling scheme is correct.

Justification of Algorithm

Comparison with the lattice version shows that for the off-lattice case, two
aspects are different. First, for a model with continuous degrees of freedop:n,
we cannot calculate the Rosenbluth factor exactly. This point has been dis-
cussed in detail in section 13.1.2 for the orientational-bias scheme. As 11'1 sec-
tion 13.1.2, we impose super-detailed balance. Second, the way in V\:’hlch we
generate trial conformations is different for off-lattice than for lattice mod-
els. In a lattite model there is no need to separate the interactions in bonded
and external ones. We have to show that the way in which we treat bonded
interactions does not perturb the sampling,

The probability of generating a chain of length £ is the product_qf the
probability of generating a trial orientation (13.2.10) e}nd.the probability of
selecting this orientation (13.2.11); for all monomers this gives, as a probabil-
ity of generating conformation n,

£ £
«lo = n) =[] pilo = n) =] et (n)pg(n). (13.2.19)
i=1 i=1

In the following, we consider the expressions for one (?f the ¢ s.egn:}ents, to
keep the equations simple. A given set of k trial orientations, which includes
orientation n, is denoted by (b, b*} (see section 13.1.2). Ai before, we stress
that the generation of the additional trial orientations (b’ _) around the old
segment (b, ) is an essential part of the generation of the l‘flal move. We de-
note the probability of generating the combined set b*, b’ by

beond(b*, bl*}_
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Hence, the flow of configurations is g/iven by

K(o — 1, b*,b'") N(o) x (o = m,b*,b"™) x acclo — 1, b*,b'™)

= exp—pufo)] x Cexp[—pu™(n)] x expl—Bu™(n)]

Wext[bn,b*)
x acc{o — n, b*, b *)Phond(p* p7*), (13.2.20)
For the reverse move, we have
Kn—=o0,b",b") = N(n)xan —0,b™ b*) xacc(n — o,b",b*)

exp[—Bu™(o))
Wext(bo, ‘bl*)
xacc(n — o0, b, b* )PP (p* b7, (13.2.21)

= exp[—Bu(n)] x Cexp[—ﬁub"“d(o)] X

Recall that the total energy of a monomer is the sum of the bonded and
external contributions:

LL(T‘L] — ubond(n] o uext[n)_

We now impose super-detailed balance (13.1.10). The factors 7bond(p* b*)
on both sides of the equation cancel each other, and we get the following
simple criterion for the acceptance rule:

acclo = n,b*,b"™)  w™(b,,b*)
acc(n — 0,b'",b*)  wet(by b'*)"

(13.2.22)

This demonstration was only for a single segment in a chain. For the entire
chain, the corresponding acceptance criterion is obtained analogously. It is
simply the product of the terms for all segments:

acclo = n, (b}, -+ ,b}
acc[n — o, (b’], -, b/

] Hf:] WEXt(bo»b'*J W[O’(b’?f" )b”E]] .
: (13.2.23)

And, indeed, our acceptance rule (13.2.18) satisfies this condition. The equa-
tion shows that, because the trial orientations are generated with a probabil-
ity (13.2.10) prescribed by the bonded energy, this energy does not appear in
the acceptance rules. In Case Study 19, a detailed discussion is given on the
advantages of this approach. It is important to note that we do not need to
know the normalization constant C of equation (13.2,10}.

The basic structure of an algorithm for configurational-bias Monte Carlo
for continuum models is very similar to the lattice version (Algorithm 23);
the main difference is the way in which configurations are generated.

0TI, wet(bn,b*) W, (b*, -, b%)]
})

I T T B i g T T P
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Case Study 18 (Equation of State of Lennard-Jones Chains)
To illustrate the configurational-bias Monte Carlo technique described in this
section, we determine the equation of state of a system consisting of eight-
bead chains of Lennard-Jones particles. The nonbonded interactions are
described by a truncated and shifted Lennard-Jones potential. The potential
is truncated at R, = 2.50. The bonded interactions are described with a
harmaonic spring
* Wby = { 05kyp(1—1)2 05 < 1< 1.5
0 otherwise ’

where 1 is the bond length, the equilibrium bond length has been set to 1,
and kg = 400.

The simulations are performed in cycles. In each cycle, we perform on
average Ng;, attermnpts to displace a particle, Naye attempts to (partly) re-
grow a chain, and N,y attempts to change the volume {only in the case
of N,P,T simulations). If we regrow a chain, the configurational-bias Monte
Carlo scheme is used. In this move we select at random the monomer from
which we start to regrow. If this happens to be the first monomer, the en-
tire molecule s regrown at a random position. For all the simulations, we
used eight trial orientations. The lengths of trial bonds are generated with a
probabhility prescribed by the bond-stretching potential (see Case Study 19).

In Figure 13.4 the equation of state as obtained from N,V,T simulations
is compared with one obtained from N,P,T simulations. This isotherm is well
above the critical temperature of the corresponding monomeric fluid (T, =
1.085, see Figure 3.3}, but the critical temperature of the chain molecules is
appreciably higher [356].

13.3 Generation of Trial Orientations

The efficient generation of good trial conformations is an essential aspect
of the configurational-bias Monte Carlo scheme for continuum models with
strong intramolecular interactions. For some models (for example, Gaussian
chains) it is possible to generate this distribution directly. For an arbitrary
model we can use the acceptance-rejection technique [33] of generating the
trial orientations.

Here, we show how a rejection technique can be used to generate trial
positions efficiently. The number of trial directions in the CBMC scheme
can be chosen at will. Often, the optimal number of trial directions is deter-
mined empirically. However, more systematic techniques exist to compute
this optimal number [357].
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Figure 13.4: Equation of state of an eight-bead Lennard-Jones chain as ob-
tained from N,V,T and N,P,T simulations using the configurational-bias

Monte Carlo scheme. The simulations are performed with 50 chains at a
temperature T.= 1.9,

13.3.1 Strong Intramolecular Interactions

Pet us consider as an example a model of a molecule in which the bonded
Interactions include bond stretching, bond bending, and torsion. The exter-
nal interactions are the nonbonded interactions. A united atom model of an
alkane is a typical example of such a molecule,

The probability that we generate a trial configuration b is given by, (see
equation (13.2.10))

P{b)db = Cexp[-Bub(p))dp. (13.3.1)

It is convenient to represent the position of an atom using the bond length r,

bond angle 8, and torsional angle ¢ (see Figure 13.5). With these coordinates
the volume element db is given by '

db =r*drdcos8dd. _ (13.3.2)

The I?onded energy is the sum of the bond-stretching potential, the bond-
bending potential, and the torsion potential:

U, 0,6) = Ui 1) + Upend (8) + wiors (). (13.33)

Substitution of equations (13.3.3) and (13.3.2) into equation (13.3.1) gives
P(b)db = P(r,8,¢)r?drd cos od¢
= Cexp[—Puy (r)r2dr x eXp[—PBlpena(0)]1d cos O
X eXPl—Pitors (P )id . - (13.3.4)

Figure 13.5: Schematic sketch of a part of a molecule.

Many modéls use a fixed bond length, in which case the first term in equa-
tion (13.3.4) is a constant.

Let us consider the molecule shown in Figure 13.5. The first atom is
placed at a random position and we now have to add the second atom. For
convenience, it is assumed that the model has a fixed bond length. The sec-
ond atom has no bonded interactions other than the constraints on the bond
length. The distribution of trial orientations, equation (13.3.4), reduces to

P2(b)db « dcos6ddg. (13.3.5)

Hence, the trial orientations are randomly distributed on the surface of a
sphere (such a distribution can be generated with Algorithm 42 in Appendix
D

For the third atom, the bonded energy contains the bond-bending energy
as well. This gives, for the distribution of trial orientations,

P3(b)db o exp[—Bupenq(8)] d cos 8dd. (13.3.6)

To generate k trial orientations distributed according to equation (13.3.6), we
again generate a random vector on a unit sphere and determine the angle
0. This vector is accepted with a probability exp(—Ripena(0)]. If rejected,
this procedure is repeated until a value of 8 has been accepted. In [33], this
acceptance-rejection method is shown to indeed give the desired distribution
of trial orientations. In this way, k {or k — 1, for the old conformation) trial
orientations are generated.

Analternative scheme would be to generate angle 8 uniformly (8 € [0, )
and to determine the bond-bending energy corresponding to this angle. This
angle © is accepted with a probability sin(8) exp[—Biyeng (0)]. If rejected, this
procedure is repeated until a value of 8 has been accepted. The selected
value of 0 is supplemented with a randomly selected angle ¢. These two
angles determine a new trial orientation.




Algorithm 25 (Growing an Alkane)
Y,

SUBRCUTINE grow (new_conf, w)

if (new_.conf) then
ib=int {ranf () *ell}+1
ibnewconf=1ib
else
ib=ibnewconf
endif
do i=1,ib-1
xn(i)=x(i)
enddo
w=1
do i=ib,el]l
if (ib.eq.l} then
if {(new.conf} then
xt (1) =ranf () *box
else
Xt (1) =xn(1)
endif
call enerex(xt{1l),eni)
w=k*exp (-beta*eni)
else
sumw=0
de j=1,k
if (.not.new.conf
+ .and. j.eg.l} then
XE{1)=x (i}
else
call next_ci{xt(j},xn,i}
endif
call enerex(xt{j),eni)
Wt (3)= exp(-beta*eni)
sumw=sumw+wt (J )
enddo
W=W* sumw
if (new_.conf) then
call select (wt, sumw,n)
xn (i} =xt (n)
xstore (i) =xt (n)
else
xn(i)=x{i)
endif
endif
enddo
return
end

grow or retrace an alkane and
calculate its Rosenbluth factor w
new_conf =.true.: new conf.
start to grow from position ib
store starting position '
newconf =.false.: old conf.
same slarting position to regrow
as used for the new configuration

store positions that are not regrown

first atom

generate random position
use old position

calculate (external) energy

and Rosenbluth factor
second and higher atoms

actual position as trial orientation
generate trial position

(external) energy of this position

update Rosenbluth factor
select one of the trial orientations

store selected configuration
for bookkeeping

Comments to this algorithm:

1. Subroutine enerex calculntes the external energy of an atom at the given
position, and subroufine select selects one of the trial positions with prob-
ability p(1) = w(i)/ }_; w(i) (Algorithm 41).

2. Subroutine next_ci adds the next atom to the chain as prescribed by the
bonded interactions (Algorithms 26, 27, and 28 are examples for ethane,
propane, and higher alkanes, respectively).

For the fourth and higher atoms, the bonded energy includes both bond-
bending and.torsion energy. This gives, for equation (13.3.4),

p]fcnd(b)db oCexp [—Bubend(e]] exp [_Bumrs(d})} dcos edd) (1337)

We again generate a random vector on a sphere and calculate the bond-
bending angle 8 and torsion ¢. These angles are accepted with a proba-
bility exp{--f tpend (8} + tors (D)1} If these angles are rejected, new vectors
are generated until one gets accepted.

Again an alternative scheme is to determine first a bond-bending angle
8 by generating 8 uniformly on [0, 7] and calculating the bond-bending en-
ergy corresponding to this angle. This angle 0 is then accepted with a prob-
ability sin(8) exp[—Bupend (8)]. This procedure is continued until we have
accepted an angle. Next we generate a torsion angle randomly on [0, 27 and
accept this angle with a probability exp[— Bt ()], again repeating this un-
til a value has been accepted. In this scheme the bond angle and torsion
are generated independently, which can be an advantage in cases where the
corresponding potentials are sharply peaked.

The acceptance-rejection technique is illustrated in Algorithms 2528 for
different n-alkanes. For all-atom or explicit-hydrogen models of hydrocar-
bons, a different strategy is needed for which we refer the reader to the rele-
vant literature [358, 359].

Case Study 19 (Generation of Trial Configurations of Ideal Chains)

in section 13.2.3, we emphasized the importance of efficiently generating
trial segments for molecules with strong intramolecular interactions. In this
case study, we quantify this. We consider the following bead-spring model of
a polymer. The nonbonded interactions are described with a Lennard-Jones
potential and the bonded interactions with a harmonic spring:

wibry ] O.5kyp(l— 12 05<1<15
u) = ;
00 otherwise

1

where 1 is the bond length, the equilibrium bond length has been set to 1,
and k.5, = 400. The bonded interaciion is only the bond stretching. The
external (nonbonded) interactions are the Lennard-Jones interactions. We
consider the following two schemes of generating a set of trial positions:



Algorithm 26 (Growing Ethane)
g,

—

SUBROUTINE next_c2(xn,xt,1i) generate a trial position for ethane

position of the first atom is known
generate bond length
generate vector on unit sphere

call bondl (1)
call ranor(b)

Xt (i) =xn(i-1)+1+p
return

L_ end

Comment to this algorithm:

1. The subroutine ranor generates a random vector on a ynit sphere (Algo-

vithin 42), and the subroutine bondl (Algorithm 43) generates the bond
length prescribed by the bonded interactions,

Algorithm 27 (Growing Propane)

Generate a trial position for ith atom —’
position of the (i — 1}th atom js known
generate bond length

second atom

use Algorithm 28

third atom

generate orientation of the

new position with desired bond angle

SUBROUTINE next.c3 (xn,
+ xt,1i)
call bondl (1}
if (i.eq.2) then
call next c2 (xn,xt, i)
else if (i.eq.2) then
¢all bonda(xn,b, i)
Xt=xn (2} +1+b
elge
STOP 'error’
endif
return

Comiment to this algorithm:

1. The subroutine ranor generates a random vector on g unit sphere (Algo-
rithm 42), the subroutine bond1l (Algorithn 43) generates the bond length
prescribed by the bonded interactions (for the second atom, only bond stretch-
ing), and the subroutine bonda senerates a vector on a unit sphere with bond
angle prescribed by the bond-bending potential (Algorithm 45).

Algorithm 28 (Generating a Trial Position for an Alkane)

generate a trial position for ith atom
position of atoms (i — 1) are known
generate bond length

second atom

use Algorithm 26

third atom

use Algorithm 27

fourth and higher atoms

generate vector with prescribed
bond and torsicnal angles

SUBRQUTINE next_cn(xn,xt,i}

call bondl(l)

if {(i.eqg.2) then
call next_c2(xn,xt,1i)

else if (i.eq.3) then
call next_c3 (xn,xt,i)

else if (i.ge.4) then
call tors_bonda{xn,b,i)
xt=xn{i-1)+1*b

endif

return

end

Comiment to this algorithm:

1. The subroutine tors bonda (Algorithm 46) generates bond bending and a
. torsional angle prescribed by the corresponding potentials.

1. Generate a random orientation with bond length uniformly gIStrfozﬁ
in the spherical shell between limits chosen such that they I_ralg[ ethat
acceptable bond lengths. For instance, we cpuld consider C;mlls fnat
correspond to a 50% stretching or compression of .the bond. In
case, the probability of generating bond length 1 is given by

x Cdlx12dl 05<1<15
210 0 otherwise

2. Generate a random orientation and the bond Iepgth prescribed bg t:le
- bond-stretching potential (as described in Algorit_hm 26). The probabil-
ity of generating bond length 1 with this scheme is

—puvi = Cexpl-pu®(U1?dl 05<1<15
Dz(l){ SCCEXP[ ALl >pl-P otherwise

Let us consider a case in which the system gonsist.e:, of ideal chacijnsa.f .Ir(]:itee?_l
chains are defined (see section 13.2.3) as chains having only bonded i
actions.



Suppose we use method 1 to generate t

bond lengths 1, ... i, t
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wi (o) =%,
:z;}gi,s:the Rosenbluth weight is the same for the new and the old confor-
Wext(n) - ﬁwfxt(n) — kE
and - ‘

Wo) = TTw(0) = k.

i=i

The acceptance rule for the first scheme is

acc(o — n) = min[],W{n}/W(o}]
and for the secondg scheme is

acc(o - n) = nﬁn[T,We"t{n}/We"t(o]] 1
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Figure 13.6: Comparison of methods 1 and 2 for the distribution of bond
lengths 1 (left) and the distribution of the radius of gyration Ry (right). The
solid lines represent the results for method 1, the dots for method 2 (£ =5
and k =5).

Inspection of these acceptance rules shows that, in the second scheme,
alf configurations generated are accepted, whereas in the first scheme this
probability depends on the bond-stretching energy and therefore will be less
than 1. Hence, it is clearly useful to employ the second scheme,

To show=iHat the results of schemes 1 and 2 are indeed equivalent, we
compare the distribution of the bond length of the chain and the distribution
of the radius of gyration in Figure 13.6. The figure shows that the results
for the two methods are indeed indistinguishable. The efficiency of the two
methods, however, is very different. In Table 13.1, the difference in accep-
fance probability is given for some values of the bond-stretching force con-
stant and various chain lengths. The table shows that if we use method 1
and generate a uniformly distributed bond length, we need to use at least 10
trial orientations to have a reasonable acceptance for chains longer than 20
monomers. Note that the corresponding table for the second method has a
100% acceptance for all values of k independent of the chain length.

Most of the simulations, however, do not invelve ideal chains but chains
with external interactions. For chains with external interactions, the first
method performs even worse. First of all, we generate the chains the same
way as in the case of the ideal chains. The bonded interactions are the same
and we need to generate at least the same number of trial directions to get
a reasonable acceptance. In addition, if there are external interactions, we
have to calculate the nonbonded interactions for aff of these trial positions.
The calculation of the nonbonded interactions takes most of the CPU time;
yet, in the first method, most of the trial orientations are doomed io be re-



k| €=5 (=10 =20 {=4a0 =80 ¢=160
1]06 <001 <001 <001 <001 €0.01
51 50 50 10 <€0.01 <«0.01 <«<0.01
10 | 64 58 53 42 <001 <«0.01
20 1 72 66 60 56 44 <0.01
40 | 80 72 67 62 57 40
80 | 83 78 72 68 62 60

Table 13.1: Probability of acceptance (%) for ideal chains using uniformly
distributed bond lengths (imethod 1), where £ is the chain length, and k is
the number of tria] orientations. The value for the spring constant is kg, =
400 (see [289]). For method 2, the acceptance would have been 100% for all
values of k and ¢.

jected solely on the basis of the bonded energy. These two reasons make
the second scheme much more attractive than the first,

13.3.2 Generation of Branched Molecules

The generation of trial configurations for branched alkanes requires some
care. Naively, one might think that it is easiest to grow a branched alkane
atom by atom. However, at the branchpoint we have to be careful. Suppose
we have grown the backbone shown in Figure 13.7 and we now have to

add the branches ba and bg. The total bond-bending potential has three
contributions, given by

Ubend = Upend (1,2, ba) + Upena(c1, ¢2, by ) 4 Upend(ba, 2, bg).

Vlugt [360] pointed out that, because of the term Upeng (ba, ¢z, bg), it is better
not to generate the positions of bx and bg independenily. Suppose that we

P(ba) oc exp [~Bupenq(cy, ca, ball,
next we would generate the second trial position, by, using
P(bslba) o exp{~B fupeng(c1, €2, b8} + Upend(ba, €2, by},

where P(bg|ba ) denotes the probability of generating by for a given position
of segment ba. However, if we would generate both positions at the same
time, then the probability is given by

P[bA: bB)

X exXp{—B [Upena(Cc1, 2, ba) + Upend(€1,€2,b8) + Upena(ba, ¢3, bg)l}.

Figure 13.7: Growth of a banched alkane.

»

The two schemes are only equivalent if
P(ba,be) =P{bslba)P(ba).

In general this equality does not hold. To see this, compare the p.rpba-bﬂity
of generating configuration ba for the two schemes. ThlS. probab'lhty is ob-
tained by integrating over all orientations bg. If both chains are inserted at

the same time, we find that

P(ba) = JdeP(bA,bB]

a4

=

& exp[—Pupenal{cr,c2,ba)]

X Jde exp{—P [upena(c1,€2, PA) + Upend (b, c2, b )]}
For the sequential scheme, we would have obtained

P(ba) = JdeP[bale)P(bA]

= P(ba)
< exp[~PuUsena(C1,C2,ba)]

as, in this scheme, segment b is inserted before segment bg. Therefore the
ility P cannot depend on bg.

PI‘O‘];?: lcl;;Yno{v]:rAe]asily see thI:lt if we use a model in_ which the éwo bra:ml:ls_;
are equivalent, for example, isobutane, the sequential schemeofoes nrc;egthe
erate equivalent a priori distributions for thfa two branches. co;l111 ’bjas
generation of trial segments is but one step in the CBMC schenr_le. fi:hy Dias
introduced at this stage can be removed by mcor_por.ahng the ratio oh e e
and the biased distributions in the acceptance criterion. However, 1: te riislu1

ing algorithm may be inefficient. Vlugt et al. [361] have shown that simply



